GUJARAT ENERGY TRANSMISSION CORPORATION LTD.
SARADAR PATEL VIDYUT BHAVAN,
RACE COURSE, BARODA – 390 007.

TECHNICAL SPECIFICATION
FOR

400/220 kV, 315 MVA;
AUTO TRANSFORMER

GETCO/E/TS - 4XMER01/R2 Jul08
SPECIAL INSTRUCTIONS TO BIDDER

Please read following instructions carefully before submitting your bid.

1. All the drawings, i.e. elevation, side view, plan, cross sectional view etc., in AutoCAD format and manuals in PDF format, for offered item shall be submitted. Also the hard copies as per specification shall be submitted.

2. The bidder shall submit Quality Assurance Plan with the technical bid.

3. The bidder shall have to submit all the required type test reports for the offered item. In absence of this, the evaluation shall be carried out accordingly as non-submission of type test reports.

4. The bidder must fill up all the points of GTP for offered item/s. Instead of indicating “refer drawing, or as per IS/IEC”, the exact value/s must be filled in.

5. All the points other than GTP, which are asked to confirm in technical specifications must be submitted separately with the bid.

6. The bidder is required to impart training in view of manufacture, assembly, erection, operation and maintenance for offered item, at his works, to the person/s identified by GETCO, in the event of an order, free of cost. The cost of logistics will be bear by GETCO.

7. Please note that the evaluation will be carried out on the strength of content of bid only. No further correspondence will be made.

8. The bidder shall bring out all the technical deviation/s only at the specified annexure.
INDEX

<table>
<thead>
<tr>
<th>Sec. No.</th>
<th>Particulars</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>SCOPE :</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3</td>
<td>GUARANTEE</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>TRANSPORT</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>STANDARDS</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>DRAWINGS</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>TYPE OF TRANSFORMER</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>DESIGN</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>TANK</td>
<td>9</td>
</tr>
<tr>
<td>1.8</td>
<td>UNDER CARRIAGE</td>
<td>11</td>
</tr>
<tr>
<td>1.9</td>
<td>CORE</td>
<td>11</td>
</tr>
<tr>
<td>1.10</td>
<td>WINDING</td>
<td>13</td>
</tr>
<tr>
<td>1.11</td>
<td>INSULATING OIL</td>
<td>14</td>
</tr>
<tr>
<td>1.12</td>
<td>INSULATION</td>
<td>15</td>
</tr>
<tr>
<td>1.13</td>
<td>TEMPERATURE RISE</td>
<td>15</td>
</tr>
<tr>
<td>1.14</td>
<td>FREQUENCY</td>
<td>16</td>
</tr>
<tr>
<td>1.15</td>
<td>PARALLEL OPERATION</td>
<td>16</td>
</tr>
<tr>
<td>1.16</td>
<td>IMPEDANCES</td>
<td>16</td>
</tr>
<tr>
<td>1.17</td>
<td>TAP CHANGING MECHANISM</td>
<td>16</td>
</tr>
<tr>
<td>1.18</td>
<td>OIL PRESERVING EQUIPMENT</td>
<td>19</td>
</tr>
<tr>
<td>1.19</td>
<td>BUSHINGS</td>
<td>19</td>
</tr>
<tr>
<td>1.20</td>
<td>COOLING</td>
<td>20</td>
</tr>
<tr>
<td>1.21</td>
<td>CENTRE OF GRAVITY</td>
<td>23</td>
</tr>
<tr>
<td>1.22</td>
<td>ACCESSORIES</td>
<td>23</td>
</tr>
<tr>
<td>1.23</td>
<td>TERMINALS</td>
<td>27</td>
</tr>
<tr>
<td>1.24</td>
<td>CURRENT TRANSFORMERS</td>
<td>27</td>
</tr>
<tr>
<td>1.25</td>
<td>TERMINAL MARKING</td>
<td>27</td>
</tr>
<tr>
<td>1.26</td>
<td>CLEANING AND PAINTING</td>
<td>27</td>
</tr>
<tr>
<td>1.27</td>
<td>PACKING AND TRANSPORT</td>
<td>28</td>
</tr>
<tr>
<td>1.28</td>
<td>LABLES</td>
<td>29</td>
</tr>
<tr>
<td>1.29</td>
<td>INSPECTION</td>
<td>29</td>
</tr>
<tr>
<td>1.30.1</td>
<td>INSTALLATION CHECKS</td>
<td>32</td>
</tr>
<tr>
<td>1.30.2</td>
<td>COMMISSIONING CHECKS</td>
<td>33</td>
</tr>
<tr>
<td>1.30.3</td>
<td>TESTING (Type, Special & Routine)</td>
<td>33</td>
</tr>
<tr>
<td>1.30.4</td>
<td>TEST ON TRANSFORMER TANK</td>
<td>36</td>
</tr>
<tr>
<td>1.30.5</td>
<td>TEST AT SITE</td>
<td>36</td>
</tr>
<tr>
<td>1.31</td>
<td>TESTS ON OLTC</td>
<td>37</td>
</tr>
<tr>
<td>1.32</td>
<td>TEST REPORTS</td>
<td>37</td>
</tr>
<tr>
<td>1.34</td>
<td>LOSS/DAMAGES</td>
<td>37</td>
</tr>
<tr>
<td>1.35</td>
<td>TECHNICAL AND GUARANTEED PARTICULARS</td>
<td>38</td>
</tr>
<tr>
<td>1.36</td>
<td>INSRUCTION MANUALS</td>
<td>38</td>
</tr>
<tr>
<td>1.37</td>
<td>DEVIATION FROM SPECIFICATION</td>
<td>38</td>
</tr>
<tr>
<td>1.38</td>
<td>TRANSFORMER LOSSES AND EVALUATION OF BID</td>
<td>38</td>
</tr>
<tr>
<td>1.39</td>
<td>PENALTY FOR HIGHER LOSSES</td>
<td>39</td>
</tr>
<tr>
<td>1.40</td>
<td>REJECTION</td>
<td>39</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.41</td>
<td>TRAINING TO ENGINEERS</td>
<td>40</td>
</tr>
<tr>
<td>1.42</td>
<td>TRANSFORMER OIL</td>
<td>40</td>
</tr>
<tr>
<td>1.43</td>
<td>QUALITY ASSURANCE PLAN</td>
<td>41</td>
</tr>
<tr>
<td>Section II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>SCOPE</td>
<td>42</td>
</tr>
<tr>
<td>2.2</td>
<td>CLIMATIC AND ISOCERANIC CONDITIONS</td>
<td>42</td>
</tr>
<tr>
<td>2.3</td>
<td>TYPE AND RATING:</td>
<td>42</td>
</tr>
<tr>
<td>2.4</td>
<td>EARTHQUAKE & WIND DESIGN LOADS</td>
<td>44</td>
</tr>
<tr>
<td>2.5</td>
<td>BUSHING CT</td>
<td>45</td>
</tr>
<tr>
<td>2.6</td>
<td>NEUTRAL CT</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>POWER SUPPLY FOR CONTROLS</td>
<td>46</td>
</tr>
<tr>
<td>2.8</td>
<td>OIL STORAGE TANK</td>
<td>46</td>
</tr>
<tr>
<td>2.9</td>
<td>OIL SAMPLE BOTTLE</td>
<td>47</td>
</tr>
<tr>
<td>SCH-A</td>
<td>GTP for Power TR</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>OLTC</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Control Cabinet</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Clamps & Connectors</td>
<td>64</td>
</tr>
<tr>
<td>SCH-C</td>
<td>Standard verification of the equipment</td>
<td>66</td>
</tr>
<tr>
<td>Appendix A</td>
<td>SPECIFICATION OF TRANSFORMER OIL</td>
<td>67</td>
</tr>
<tr>
<td>Appendix B</td>
<td>QUALIFICATION REQUIREMENTS FOR ERECTION TEST NG & COMMISSIONING</td>
<td>69</td>
</tr>
<tr>
<td>Annexure-I</td>
<td>AUTOMATIC VOLTAGE REGULATING RELAY</td>
<td>72</td>
</tr>
<tr>
<td>Annexure-C</td>
<td>List of documents to be attached</td>
<td>74</td>
</tr>
<tr>
<td>Annexure-II</td>
<td>Technical specification for On line moisture and multiple gas analyzer</td>
<td>75</td>
</tr>
<tr>
<td>Annexure-III</td>
<td>Technical specification for Nitrogen Injection Fire Protection system</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>GTP for NIFPS</td>
<td>88</td>
</tr>
</tbody>
</table>
SECTION: I

DETAIL SPECIFICATION OF 315 MVA, 400/220 kV AUTO TRANSFORMER

GENERAL TECHNICAL REQUIREMENTS

1.1 SCOPE:

1.1.1 This section covers the design, manufacture, assembly, inspection, testing at manufacturer’s works, supply and delivery include loading, transportation & unloading on plinth at site, of the 315 MVA, 400/220 kV with 33 kV tertiary winding rated for 105 MVA reactive & 5 MVA active connected in YNaOd11, Auto transformers as detailed in the Schedule of requirements, complete with all accessories required for safe, efficient, satisfactory and trouble free operation of the equipment.

1.1.2 The scope of work shall also include EITHER complete erection, testing and commissioning of all the equipments/accessories furnished under this specification OR only supervision of erection, testing and commissioning of all the equipment furnished under this Specification, as indicated in Schedule – A of the commercial bid.

1.1.2.1 Each transformer shall be supplied with one number of Oil storage tank as per cl. no. 2.8 and 3 nos. of oil sampling bottles as per cl. no. 2.9, Fiber optic sensors, On Line Moisture and Gas In Oil Analyser as per Annexure II, Nitrogen Injection System For Protection Against The Fire & Explosion as per specification no. GETCO/E/TS-FF/2902 DTD.JUNE 2008, attached with this specification. However, Bidder has to quote the requirement of equipment / Material as indicated in Schedule-A of commercial Bid.

1.1.3 GUARANTEE:

The bidder shall among other things guarantee the following:

i) Quality and strength of materials used.

ii) The tenderer shall give the guarantee as satisfactory working of the complete transformer for 36 months from the date of commissioning of equipment or 42 months from the date of receipt of transformer at site, whichever is earlier.

Guarantee period will be reckoned from the date of receipt of 100 % accessories and not from the date of receipt of main tank only.

It may be noted that the service guarantee would be applicable even when the transformers are erected and operated through any other agency appointed by the GETCO.
1.2 TRANSPORT:

1.2.1 The equipment to be furnished under this specification shall be packed for transportation in such a manner as may facilitate easy handling and avoiding any damage during transit.

1.3 STANDARDS:

1.3.1 The Power Transformers covered under this specification shall comply with the requirements of the latest edition of IS: 2026 (amended up to date) except specified herein. However, in the event the offered equipment conforms to any other standard, the salient points of difference between the standard adopted and the specified standard shall be clearly brought out in the bid.

1.4 DRAWINGS:

1.4.1 Drawings in AutoCAD format and in hard copy, incorporating the following particulars shall be submitted by the bidder with the bid.

i) General outline drawing showing dimensions, wheel loading, net weight of transformer, tap change gear, marshalling box etc.

ii) General arrangements of foundations and structural mounting.

iii) Sectional views showing the general constructional features and disposition of various fittings and sectional view of Core Coil assembly clearly indicating boltless construction and other necessary specific details.

iv) Dimensions of the largest packages to be transported.

v) Drawing showing the complete details of all class condenser bushing and other relevant data.

vi) Drawings showing details of Buchholtz relay, winding temperature indicator, oil temperature indicator, FO system, air cell, cooling systems, tap changer etc.

1.4.2 The successful bidder shall submit the following drawings in AutoCAD format and in hard copy for the approval of the purchaser within commencement period.

i) General outline drawing showing front, side elevation and plan of the transformer and accessories with detailed dimensions. The clearances between HV and LV terminals and ground should also to be shown.

ii) Detailed foundation drawings along with structural drawings showing design criteria & loadings.
iii) Drawings of each type of bushings, lifting dimensions, clearance between HT and LT terminals and ground, quantity of insulating oil, name plate details etc. showing various weights and ratio of WT – CT, OT-CT, all bushing CT and details of OLTC & RTCC.

iv) Large scale drawings of high, medium and low-tension windings of the transformers showing the nature and arrangement of insulators and terminal connections.

v) Control and annunciation wiring diagram and drawings showing temperature indicator, FO System, alarm circuits, Buchholz relay, oil surge relay, PRV, MOG, WTI, OTI, AVR relay, OLTC, cooling control etc.

vi) Drawing showing construction and mounting details of marshalling boxes.

vii) Operation and maintenance guide for transformer and OLTC.

viii) Detailed drawing showing wheel loadings and its center of gravity.

1.4.3 The bidder may submit any other drawings found necessary in addition to the drawings mentioned above or as asked during detailed engineering.

1.5 TYPE OF TRANSFORMER:

1.5.1 The transformers shall be of oil immersed type suitable for outdoor installation. The type of working shall be as specified in specific Technical requirements given in Section - II of this Specification.

1.6 DESIGN:

1.6.1 The autotransformer shall be used for bi-directional flow of rated power. The transformer and accessories shall be designed to facilitate inspection, cleaning and repairs and for operation where continuity of supply is the primary consideration. All apparatus shall be designed to ensure satisfactory operation under sudden variations of load and voltage as may be met with under working conditions of the system including those due to short circuits.

1.6.2 All materials used shall be of the best quality and of the class most suitable for working under the conditions specified and shall withstand the variations of temperatures and atmospheric conditions arising under working conditions without inner distortion or deterioration or setting up of undue stresses in any part & also without affecting the strength and suitability of the various parts for the work which they have to perform.

1.6.3 All outdoor apparatus, including bushing insulators with their mountings, shall be so designed as to avoid pockets in which water can collect. All connections and contacts shall be of ample cross-sections and surfaces for carrying continuously the specified current without undue heating and fixed connections shall be secured by bolts or set screws of ample size,
adequately locked. Lock nuts shall be used on stud connection carrying current.

1.6.4 Radio Interference and Noise level:

The transformer shall be designed with particular attention to the suppression of maximum harmonic voltage, especially the third and fifth so as to minimize interference with communication circuits.

The noise level of transformer, when energized at normal voltage and frequency with fans and pumps running shall not exceed, when measured under standard conditions, the values specified in NEMA standard publication TR-I.

1.6.5 The transformer shall be capable of being loading in accordance with IS: 6600/IEC-354. There shall be no limitation imposed by bushings, tap changers etc. or any other associated equipments.

1.6.6 The transformer and all its accessories including CTs etc shall be designed to withstand without any injury, the thermal and mechanical effects of any external short circuit to earth and of short circuits at the terminals of any winding for a period of 3 secs. The short circuit level of the HV and LV system to which the subject transformer will be connected is 40 kA (sym, rms, 3 phase fault on 400 and 220 kV) & 25 kA (sym, rms, 3 phase fault on 33 kV).

1.6.7 Transformer shall be capable of withstanding thermal and mechanical stresses caused by symmetrical or asymmetrical faults on any winding.

1.7 TANK:

1.7.1 The transformer tank and cover or BELL type tank shall be fabricated from good commercial grade low carbon steel suitable for welding and of adequate thickness. The thickness of each side plate shall be indicated in GTP. The tank and the cover shall be of welded construction. All seams shall be welded and where practicable they shall be double welded. The tank wall shall be reinforced by stiffener of structural steel for general rigidity. The tank shall have sufficient strength to withstand without permanent distortion (i) filling by vacuum, (ii) continuous internal gas pressure of 0.35 atmospheres with oil at operating level and (iii) mechanical shock during transportation. The tank cover shall be bolted to the tank and the transformer design shall be such that the tank will not be split between the lower and upper cooler connection for untanking. The tank covers shall be fitted with pockets at the position of maximum oil temperature corresponding to MCR (Maximum Continuous Rating) for RTD sensors and bulbs of oil and winding temperature indicators. It shall be possible to remove these sensors bulbs without lowering the oil in the tank. The tank wall penetrations shall be leak proof, suitably marked with respective sensor identification.
1.7.2 A man-hole with a welded flange and a bolted cover shall be provided on the tank cover. The man-hole shall be of a sufficient size to ease access to the lower ends of the bushings, terminals etc.

1.7.3 All bolted connections to tank shall be fitted with suitable oil-tight gasket, which shall give satisfactory service under the operating conditions. Special attention shall be given to the methods of making the hot oil-tight joints between the tank and cover as also between the cover and the bushings and all other to ensure that the joints can be remade satisfactorily and with ease, with the help of semi-skilled labours. Where compressible gaskets are used, steps shall be provided to prevent over compression. Bushings, turrets, cover of accessories, holes and other devices shall be designed to prevent any leakage of water into or oil from the tank. There should not be any leakage at least for three years and this should be guaranteed. **All the gaskets to be provided shall be of RC70C or RC80C grade. Necessary tests certificates from manufacturer shall be submitted along with acceptance test report. The gasket to be used shall not be older than One year.**

1.7.4 Suitable guides shall be provided for positioning the various parts during assembly or dismantling. Adequate space shall be provided between the covers and windings and the bottom of the tank for collection of any sediment.

1.7.5 Lifting eyes or lugs shall be provided on all parts of the transformer requiring independent handling during assembly or dismantling. In addition, the transformer tank shall be provided with lifting lugs and bosses properly secured to the sides of the tank for lifting the transformers either by crane or by jacks.

1.7.6 The design of the tank, the lifting lugs and bosses shall be such that the complete transformer assembly filled with oil can be lifted with the use of those lugs without any damage or distortions.

1.7.7 The tank shall be provided with two suitable copper alloy or any other suitable material lugs for the purpose of grounding.

1.7.8 The tank shall be equipped with the following valves with standard screw connection for external piping. All valves up to and including 100 mm shall be of GM and larger valves shall be of Cast Iron bodies with GM fittings. They shall be of full way type with internal screw and shall open when turned counter clock wise when facing the hand wheel, along with suitable locking in open and close positions.

 i) One drain valve of adequate size with eccentric reducer and flange, located on the low voltage side of the transformer. This valve shall be equipped with a small sampling cock. The draining valve must be at bottommost location of the tank.

 ii) One filter valve of adequate size with eccentric reducer and flange, located at the top of tank on the high voltage side. The opening of this valve shall be baffled to prevent airation of oil.
iii) One filter valve of adequate size with eccentric reducer and flange, located on the high voltage side of the transformer above the bottom of the tank.

iv) Suitable valves shall be provided to take sample of oil from the OLTC chamber during operation of transformer.

v) A valve of other suitable means shall be providing to fix the on line dissolved Gas monitoring system to facilitate continuous dissolved gas analysis. Location and size of the same shall be finalized during detailed engineering.

vi) Pressure relief valve of adequate size & number/s shall be provided on main tank as well as for OLTC.

vii) All hardware used shall be cadmium plated / electro galvanised.

viii) Necessary provision for installation of ‘HYDRAN – M2’ or equivalent On Line monitoring system, shall be made for satisfactory performance through out the life of transformer. Location and size of the same shall be finalized during detailed engineering.

1.8 UNDER CARRIAGE:

1.8.1 The transformer tank shall be supported on a structural steel base equipped with forged steel single flanged wheels suitable for moving the transformer completely with oil.

1.8.2 Jacking pads shall be provided. It shall be possible to change the direction of the wheels through 90° when the transformer is lifted on jacks to permit movement of the transformer both in longitudinal and transverse direction. A standard track gauge (preferably 1676 mm) in both longitudinal and transverse directional shall be chosen.

1.8.3 Pulling eyes shall be provided to facilitate movement of transformer and they shall be suitably brazed in a vertical direction so that bonding does not occur when the pull has a vertical component.

1.9 CORE:

1.9.1 The transformer may be of core or shell type. The core shall be built up with high-grade non-ageing cold rolled grain oriented silicon steel laminations having high permeability and low hysteresis loss. The core material shall be prime CRGO, which shall be procured directly from manufacturer or through accredited marketing organization of reputation.

1.9.1 (a) The thickness of lamination shall be 0.27 mm or less. Surface insulation of laminations shall be rust resistant and have high inter laminar resistance. Insulation shall withstand annealing temperature as high as 8500 °C. Insulation shall be resistant to hot cooling medium. Laminations are not to be punched.

1.9.1 (b) Bidder should have in house core cutting facility for proper monitoring & control on quality & also to avoid any possibility of mixing of prime
material with defective/second grade material. This should be indicated invariably in the QAP. The purchaser may witness the core-cutting process. In case the in-house core cutting facility is not available, then the same shall be carried out in the presence of the representative of GETCO.

1.9.1(c) Bidder will offer the core for stage inspection and get approval from purchaser during manufacturing stage. The bidder has to produce following documents at the time of stage inspection for confirmation of use of prime core materials.
 i) Invoice of supplier
 ii) Mills of approved test certificates
 iii) Packing list
 iv) Bill of lading
 v) Bill of entry certificate by custom.
 To avoid any possibility of mixing of ‘Prime material’ with any other second grade/defective material, the imported packed slit coils of CRGO materials shall be opened in the presence of the GETCO representative. Only after the inspection and approval from purchaser, the core material will be cut in-house OR sent to external agency for cutting individual laminations. In case the core is sent to external agency for cutting, GETCO representative will have full access to visit such agency for the inspection of the cutting of core.

1.9.2 After being sheared, the laminations shall be treated to remove all burrs and shall be re-annealed to remove all residual stresses. The insulation of the lamination shall be insert to the action of hot transformer oil. Paper and varnish insulation will not be accepted. The nature of insulation should be specified in the tender.

1.9.3 The core shall be rightly clamped to ensure adequate mechanical strength and to prevent vibration during operation. The clamping structure shall be so constructed that eddy currents will be minimum.

1.9.4 The core shall be provided with lugs suitable for lifting the complete core and coil assembly of the transformer.

1.9.5 The core and the coil assembly shall be so fixed in the tank that shifting will not occur when the transformer is moved or during a short circuit.

1.9.6 The transformer shall be designed in such a way that the flux density in the steel core corresponding to the Rated voltage and the rated frequency shall be not exceeding 1.727 tesla.

1.9.7 Core and Frame terminals should be brought out on transformer top so as to enable meggaring.

1.9.8 The core and the coil assembly shall be so fixed in the tank that shifting will not occur and cause any damage when the transformer is moved shifted, or during a
short circuit. **The maximum flux density in any part of core or yoke at 10% continuous over voltage condition shall not exceed 1.9 tesla.**

1.9.9 The complete core and core coil assembly of bolt less core type transformer shall be so assembled that the axis and the plate of outer surface of the coil stack shall not deviate from the vertical plane by more than 25 mm.

1.9.10 In case transformer with variable flux, the voltage variation which would affect flux density at every tap shall be kept in view while designing the transformer. Transformers shall be designed to withstand the following over fluxing conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>110 % of maximum flux density corresponding to rated voltage</td>
</tr>
<tr>
<td>b)</td>
<td>125 % & 140 % of maximum flux density</td>
</tr>
</tbody>
</table>

1.9.11 **Air core reactance of HV winding shall not be less than 20% and minimum knee point voltage shall not be less than 1.1 p.u.**

1.10 **WINDING:**

1.10.1 The conductor for winding shall be of electrolytic grade copper. The winding shall be so designed that all coil assemblies of identical voltage ratings shall be interchangeable and field repairs can be readily done, without special equipment. The coils shall be supported between adjacent sections by insulating spacers and the barriers, bracings and other insulation used in the assembly of the windings shall be arranged to ensure a free circulation of the oil and to reduce hot spots in the windings. **The insulation paper shall be of high quality and the value of degree of polymerization shall not be less than 1200 Pv and the necessary test certificate shall be submitted along with the stage inspection report. Provision shall be made in the tank, for taking sample, in future, of paper for testing purpose and location shall be easily accessible and indicated on the transformer tank by affixing special caution plate.**

1.10.2 The insulation of the coils shall be such as to develop the full electrical strength of the windings. All materials used in the insulation and assembly of the windings shall be insoluble, non-catalytic and chemically inactive in the hot transformer oil and shall not soften or otherwise be adversely affected under the operating conditions.

1.10.3 All threaded connections shall be provided with locking facilities. All leads from the winding to the terminal board and bushings shall be rigidly supported to prevent injury from vibration. Guide tubes shall be used where practicable.

1.10.4 The windings shall be clamped securely in place so that they will not be displaced or deformed during short circuits. The assembled core and windings shall be vacuum dried and suitably impregnated before removal from the treating tank. The copper conductors used in the coil structure shall
be best suited to the requirements and all permanent current carrying joints in the windings and the locks shall be welded or brazed.

1.10.5 Windings shall be subjected to a shrinkage treatment before final assembly, so that no further shrinkage occurs during service. Adjustable device shall be provided for taking up any possible shrinkage of coils in service if required.

1.10.6 The conductor shall be transposed at sufficient intervals in order to minimize eddy currents and equalize the distribution of currents and temperature along the windings.

1.10.7 The tapping winding shall be provided separately from main winding to minimize the out of balance forces in the transformer at all voltage ratios.

1.10.8 Transformer shall be designed and constructed to withstand, without damage, the thermal effects on external short circuits (SC) for 3 seconds under conditions specified in IS: 2026 (Part-I, amended up to date).

1.10.9 Bidder shall invariably indicate in the GTP, the cross sectional area of all windings with respect to the current density adopted.

1.10.10 Bidder shall have to submit the calculations for thermal & dynamic ability to withstand short circuits.

1.10.11 The cooling calculations will have to be submitted by successful bidder.

1.10.12 Fiber optic sensors shall be embedded in each phase of the winding located where the temperature is highest. The location and details shall be indicated in the respective drawings.

1.10.13 Tertiary Windings:
 The tertiary windings shall be suitable for connection of reactors or capacitors which would be subjected to frequent switching. All the windings shall be capable of withstanding these stresses that may be caused by such switching.
 The Tertiary winding shall be designed to withstand mechanical and thermal stresses due to dead short circuit on its terminals.
 The tertiary winding shall be suitable for connection to LT Transformer for auxiliary supply.

1.11 INSULATING OIL:

1.11.1 The oil for first filling together with 10% extra shall be supplied with each transformer. The oil shall comply in all respects with the provisions of the latest edition of IS: 335 (as amended upto date) & IEC:296-2000. Particular attention shall be paid to deliver the oil free from moisture having uniform quality throughout. The oil may be supplied either in sealed tanker, or in non-returnable sealed steel drums, which will be opened at site in presence of GETCO representative. The quantity of oil for first filling & 10% extra of each transformer shall be stated in the tender.

1.11.2 The supplier of transformer shall furnish test certificates of the insulating power oil supplied against their acceptance norms, prior to dispatch. Subsequently oil samples shall be drawn
i) At manufacturer’s works before and after heat run test and shall be tested for following:
 a) BDV in kVrms
 b) Moisture content
 c) Dissolved Gas Analysis – samples for DGA shall be taken from sampling device within 24 hrs prior to commencement of heat run test and immediately after this test. The acceptance norms shall be as per IS:10593 (based on IEC-599)

ii) prior to filling in main tank at site and shall be tested for BDV and moisture content and Corrosive sulphur detection test as per ASTM D1275 subjecting oil for 150 °C for 48 hrs for acceptance norms as per Appendix – A.

iii) prior to energisation at site and shall be tested for the following:
 a) BDV in kVrms
 b) Moisture content
 c) Tan Delta at 90 deg cen.
 d) Resistivity at 90 deg cen.
 e) Interfacial Tension

1.11.2.1 On Line Moisture and Gas In Oil Analyser For New Transformer With Model Analysis Software And Remote Data Transfer/Communications through internet shall be provided as per Technical Specifications attached.

1.12 INSULATION:

1.12.1 The dielectric strength of winding in insulation & of the bushings shall conform to the values given in IS: 2026 (as amended upto date).

1.12.1.1 The partial discharges in the transformer at the time of dispatch shall not be more than 500 pC.

1.12.1.2 The Maximum Limit of value of tan delta shall be 1% for windings, 0.5% for bushings and 0.2 % for oil.

1.12.2 For rated system voltage of 66, 132 and 220 kV, the following impulse and power freq. withstand test voltage may be offered.

<table>
<thead>
<tr>
<th>System Voltage</th>
<th>Impulse Test Voltage</th>
<th>Power Freq. Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>66 kV</td>
<td>350 kVp</td>
<td>160 kV</td>
</tr>
<tr>
<td>132 kV</td>
<td>650 kVp</td>
<td>275 kV</td>
</tr>
<tr>
<td>220 kV</td>
<td>1050 kVp</td>
<td>460 kV</td>
</tr>
</tbody>
</table>

1.12.3 The HV/MV winding of the transformer shall have graded insulation. The LV winding of transformer shall have full insulation. The insulation class of the neutral end of the windings shall be graded to 95 kV (Impulse) and 38 kV (Power frequency) withstand.

1.13 TEMPERATURE RISE:

1.13.1 The transformer shall be installed out-door without any protection from sun and rain. The maximum hot spot temperature rise shall be limited to 105° C with Class - A insulation. Each transformer shall be capable of operating continuously at its normal rating without exceeding the temperature rise limits specified as under:

<table>
<thead>
<tr>
<th>Winding (measured by resistance)</th>
<th>Temp. rise in °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONAN</td>
<td>55</td>
</tr>
<tr>
<td>ONAF / OFAF</td>
<td>60</td>
</tr>
<tr>
<td>Top oil (measured by thermometer).</td>
<td>Temp. rise in °C</td>
</tr>
<tr>
<td>ONAN</td>
<td>50</td>
</tr>
<tr>
<td>ONAF / OFAF</td>
<td>55</td>
</tr>
</tbody>
</table>

Cores

Not to exceed that permitted for the adjacent part of the winding.

NOTE: The reference subject temperature for the purpose of temp. rise shall be 40° C.

1.13.2 The transformer shall be free from abnormal noise (other than humming) and vibration.

1.13.3 **The transformer will deliver rated current without exceeding temperature rise when operating on 105% of the rated voltages. The transformer shall be capable of being operated without danger on any tapping at the rated MVA with voltage of ±10% corresponding to the voltage of that tapping.**

1.14 **FREQUENCY:**

1.14.1 The transformer shall be suitable for continuous operation with a frequency variation of ± 3 % from normal of 50 Hz without exceeding the specified temperature rise.

1.15 **PARALLEL OPERATION:**

1.15.1 The similar ratio transformers shall operate satisfactorily in parallel with each other if connected between high voltage and low voltage bus-bars. Also, wherever specified, the transformers shall be suitable for parallel operation with existing transformers. The details of existing transformers will be provided.

1.16 **IMPEDANCES:**

1.16.1 Supplier shall indicate the guaranteed impedance and tolerances and also the upper and lower limits of impedances, which can be offered without an increase in the quoted price. Impedance shall include positive and zero sequence and shall be expressed in terms of the branches of the star connected equivalent diagrams, all on the same KVA base and the range shall be for each branch of the equivalent circuit in turn. The transformer impedances shall be as specified in Section - II of this Specification.

1.17 **TAP CHANGING MECHANISM:**

1.17.1 **ON LOAD TAP CHANGER:**
1.17.1.1 Each transformer shall be provided with on load tap charging mechanism. This shall be designed for remote control operation from switchboard in the control room. In addition the tap changer shall include the followings:

 a) An oil immersed tap selector and arcing switch for arc suppressing tap selector, provided with reactor of resistor for reduction of make & break arcing voltage and short circuits.

 b) Motor driven mechanism.

 c) Control and protection devices.

 d) Local tap changer position indicator.

 e) Manual operating device.

 f) Pressure relief device

1.17.1.2 The on load tap changer shall be so designed that the contacts do not interrupt arc within the main tank of the transformer. The tap selector and arcing switch or arc suppressing selector switch shall be located in one or more oil filled compartments. The compartment shall be provided with a means of releasing the gas produced by the arcing. It shall be designed so as to prevent oil in the tap selector compartment from mixing with the oil in the transformer tank. A Buchholtz relay shall be provided to indicate accumulation of gas and alarm thereof.

1.17.1.3 The tap changer shall be capable of permitting parallel operation with other transformer of the same type.

1.17.1.4 The transformer shall give full load output on all taps. The manual operating device shall be so located on the transformer that it can be operated by an operator standing at the level of the transformer track. It shall be strong and robust in construction.

1.17.1.5 The control scheme for the tap changer shall be provided for independent control of the tap changers when the transformers are in independent service. In addition, provision shall be made to enable parallel control also at times so that the tap changers will be operated simultaneously, when one unit is in parallel with another so that under normal condition the tap charger will not become out of step and this will eliminate circulating currents. Additional features like master, followers and visual indication during the operation of motor shall also be incorporated.

1.17.1.6 Necessary interlock blocking independent control when the units are in parallel shall be provided.

1.17.1.7 Under abnormal conditions such as may occur, if the contactor controlling one tap changer sticks, the arrangement must be such as to switch off supply, to the motor so that an out of step condition is limited to one tap
difference between the units. Details of out of step protection provided for the
taps should be furnished in the tender.

1.17.1.8 The contactors and associated gear for the tap change driving motors shall
be housed in a local kiosk mounted adjacent to or on the transformer. The
motor shall be suitable for operation with 3 ph, 415 Volts, 50 Cycles external
power supply.

1.17.1.9 In addition to the above equipment, the supplier shall supply a separate panel
for installation in purchaser’s control room for remote operation with the
following accessories.

a. Raise and lower push Button switch.

b. Remote tap position Indicator of digital type, device for indicating ‘ON’ &
‘OFF’ of Fan / Motor / Pump of cooler control.

c. Microprocessor based Annunciation

d. Out of step relay and indication.

e. Name-plate for each component. An alarm indication lamps showing
tap changing in progress.

f. **RTCC panel shall be compatible to SCADA operation.**

g. Any other accessory required for satisfactory operation or required
during detail engineering.

1.17.1.10 Complete particulars of the tap changing gear including the capacity of the
motor shall be stated in the tender.

1.17.1.11 Tap changer shall be suitable for bidirectional power flow. The tap changer
rating shall be *more than* maximum rated current of transformer.

1.17.1.12 Manual control

The cranking device for manual operation of the OLTC gear shall be
removable and suitable for operation by a man standing at ground level. The
mechanism shall be complete with following:

a) Mechanical tap position indicator which shall be clearly visible

b) A mechanical operation counter

c) Mechanical stops to prevent over-cranking of the mechanism beyond the
extreme tap position

d) The manual control considered as back up to the motor operated load tap
changer control shall be interlocked with the motor to block motor start-up
during manual operation. The manual operation mechanism shall be
labeled to show the direction of operation for raising the HV terminal
voltage and vice-versa

1.17.2 Automatic Voltage Regulating Relays:
1.17.2.1 The AVR relay shall be provided, if asked in particular bid, as per specification indicted in Annexure – I, The scheme shall detect (i) failure of auxiliary supply, (ii) failure of PT supply and (iii) failure of mechanism to complete the tap changing operation. The relay shall have necessary contacts to be connected to the alarm & / or to the Annunciator available in the panel for visual and audible indication of the failure of trip circuit. The AVR relay shall be compatible to SCADA operation of any make.

1.17.2.2 All the necessary wiring shall be carried out in RTCC panel and schematic drawings shall be submitted with the technical bid and during detailed engineering for approval in duplicate.

1.18 **OIL PRESERVING EQUIPMENT:**

1.18.1 Air cell type conservator tank is to be provided for oil conservator system.

1.18.2 Bidder shall offer diaphragm type oil sealing in the conservator to prevent oxidation and contamination of oil due to contact with water. In this type of oil preservation system, conservator shall be fitted with a dehydrating filter breather.

1.18.3 In this system, using a flexible Diaphragm shall prohibit contact of oil with atmosphere or nitrile rubber reinforced nylon cloth air cell.

(a) Diaphragm used shall be suitable for continuous operation in an atmosphere of 100 °C to which transformer oil is likely to rise.

(b) The connection of the air cell to the top of the reservoir shall be by an air proof seal permitting entrance of air into the cell only.

(c) The diaphragm of the conservator shall withstand the vacuum during installation and maintenance. Otherwise provision shall be made to isolate the conservator from main tank during vacuum by providing vacuum sealing valve in the pipe connecting the main tank with the conservator.

1.19 **BUSHINGS:**

1.19.1 The bushings shall have high factor of safety against leakage to ground and shall be so located as to provide adequate electrical clearances between bushings and grounded parts. Bushings of identical voltage rating shall be interchangeable. All bushings shall be equipped with suitable terminals of approved type and size and shall be suitable for bimetallic connection. The insulation class of the high voltage neutral bushing shall be properly coordinated with the insulation class of the bushings of the high voltage winding.

1.19.2 Each bushing shall be so coordinated with the transformer insulation that all flash over will occur outside the tank.
1.19.3 All main winding and neutral leads shall be brought out through outdoor type bushings which shall be so located that the full flashover strength will be utilized and the adequate phase clearance shall be realized.

1.19.4 All porcelain used in bushings shall be of the wet process, homogeneous and free from cavities or other flaws. The glazing shall be uniform in colour and free from blisters, burrs and other defects.

1.19.5 The bushings for 66 kV and above shall be of the oil filled condenser type (hermetically sealed) and shall conform to the latest edition of IS: 2099 & IS:3347. The characteristics of the oil used in the bushings shall be the same as that of the oil in the transformer.

1.19.6 All bushings shall have puncture strength greater than the dry flashover value.

1.19.7 Main terminals shall be solder-less terminals and shall be suitable for ACSR "Moose" Conductor. The spacing between the bushings must be adequate to prevent flashover between phases under all conditions of operation.

1.19.8 Special adjustable arcing horns may also be provided for the bushings as per IS: 3716 - 1966.

1.19.9 The bidder shall give the guaranteed withstand voltages for the above and also furnish a calibration curve with different settings of the co-ordination gap to the purchaser to decide the actual gap setting. Bidder’s recommendations are also invited in this respect.

1.19.10 Bushing CTs should be provided for REF protection as specified in Section – II Cl. 2.5.

1.19.11 The tan delta and capacitor measurement tap shall be provided.

1.19.12 The STC rating shall be 40 kA for 3 sec for 132 kV & above class and 25 kA for 3 sec for 66 kV and below class.

1.19.13 The height of live part shall be so arranged that minimum upto plinth shall be maintained as per safety clearances from latest CBIP guide.

1.20 COOLING:

1.20.1 AIR BLAST, FORCED COOLED OIL TRANSFORMERS:

1.20.1.1 Each cooler unit shall consist of a totally enclosed, oil immersed motor pump and a forced air-cooled heat exchanger (Radiator). Motor and pump shall be enclosed in an oil tight container with motor leads brought through hermetically sealed bushings. Each cooler unit shall be detachable from the transformers without disturbing the oil in the transformer tank. Moving parts of motor and pump shall be readily removable without dismantling of cooler and with minimum spillage of oil. Fans shall be located so that they are readily accessible for inspection and repair. Heat exchangers, fans and oil pumps shall be completely interchangeable.
1.20.1.2 All cooler shall be attached to and mounted on the transformer tank.

1.20.1.3 Coolers shall be so designed as to be accessible for cleaning and painting to prevent accumulation of water on the outer surfaces to completely drain oil in the tank and to ensure against formation of gas pockets when the tank is being filled.

1.20.1.4 ONAF/OFAF cooled transformers shall be provided with requisite number of radiator banks (Minimum 2 nos). Besides the requisite number of oil pumps and fans required for normal operation, each radiator bank shall be provided with one standby fan and oil pump as applicable.

1.20.1.5 Cooler units shall be connected to the tank by machined steel flanges welded to cooler units and to the tank and provided with gaskets. Each cooler unit shall be provided with an indicating shut-off valve, which can be fastened in either open or closed position. A separate oil-tight black flange shall be provided for each tank connection for use when the cooler unit is detached. Each cooler unit shall have a lifting eye, an oil drain at the bottom and a vent at the top.

1.20.1.6 An oil flow indicator with alarm contacts shall be furnished with each pumps assembly to indicate normal pump operation and direction of oil flow.

1.20.1.7 Fans or blowers for air blast cooling shall be mounted so as to ensure that no damage to the coolers can arise from vibration of the fans. Wire mesh screens shall be fitted to prevent accidental contact with the blades, the mesh being not greater than 2.5 cm.

1.20.1.8 In excess of ONAN / ONAF / OFAF type cooling, the transformer shall be capable of giving a continuous output of at least 50 % of rated full output with all the artificial cooling out of service and without exceeding the temperature rise. In case of ONAN / ONAF type of cooling the transformer shall be capable of giving continuous output of at least 75 % of the rated full output with all the artificial cooling out of service and without exceeding temperature rise. In case of ONAN or ONAF type of cooling, the transformer shall have two sets of radiators.

1.20.1.9 For OFAF cooled transformers with ONAN rating, piping system shall permit bypassing of oil pump and operation of the transformer at the ONAN rating, in case forced oil system develop any troubles.

1.20.1.10 ONAN / ONAF / OFAF cooled transformers shall be designed to operate at no load for 4 hours without any cooler unit in service. ONAN / ONAF cooled transformers shall also be capable of delivering its rated MVA for 20 minutes with the loss of oil cooling equipment while the transformer is carrying full load.

1.20.1.11 The cooling fan shall be operated at 2 sets of temperatures for fan GR I & II. The oil pump shall be also operated by WTI.
1.20.2 NATURAL OIL COOLER TRANSFORMER:

1.20.2.1 The radiating section / tubes provided shall have sufficient cooling surface to limit the temperature rise to the values specified under Clause 1.13 of this specification. The radiating sections / tubes shall be connected to the tank cooler assembly headers by machined steel flanges with adequate gaskets to avoid oil leakage. Each radiator unit shall be provided with positive operated gate type oil leak proof shut-off valve, which can be fastened in either closed or open position and separate oil tight flange shall be provided for each tank connections for use when the radiator unit or cooler assembly is detached. It shall be possible to take out any of the radiating tubes without disturbing the transformers. Each radiator unit shall have a lifting arrangement and oil drain at the bottom and a vent at the top.

1.20.2.2 The radiators shall be so designed as to prevent any accumulation of water on the outer surface or formation of gas pockets when the tank is being filled.

1.20.3 COOLER CONTROL:

1.20.3.1 Cooler units shall be suitable for operation with 415 Volts, 3 phase, 50 Hz external power supply.

1.20.3.2 Control equipment for oil pump and for motors shall be mounted in a marshalling cabinet adjacent to the transformer and it shall include the necessary contactors with automatic control and annunciation equipment and provision for manual control.

1.20.3.3 A single metal enclosed main isolating switch with Miniature Circuit Breakers shall be provided for the cooling plant contactor group.

1.20.3.4 The switching in or out of the cooling equipment shall be controlled by winding temperature and there shall be provision for automatic switching in or out at pre-determined temperature levels which should be capable of adjustment and setting at will. Hunting of the cooling equipment should be avoided by suitable auxiliary timer relay.

1.20.3.5 The bidder shall specify the loading of the transformers in case of failure of one or more set of fans or pumps.

1.20.3.6 In case of ONAN / OFAF cooled transformers, provision of automatic changeover from main supply to stand by auxiliary supply should be available in case of failure of main supply. Necessary alarm etc. for this may also be included.

1.20.3.7 The bidder shall provide for blower indicator in the cooling circuit in the remote control panel. Following lamp indications with annunciation shall be provided in cooler control cabinet
 a) Control supply failure
 b) Cooling fan failure for each bank
c) Cooling pump failure for each pump

d) No oil flow or Reverse flow for pumps

e) Common thermal overload trip

One potential free initiation contact for all the above conditions shall be wired independently to the terminal blocks of cooler control cabinet.

1.20.3.8 The fan circuit shall be operated at different Temperature for group I fans and group II fan from WTI. The pump circuit shall be also operated from same WTI contacts at diff. Temp.

1.20.3.9 The connection shall be bolted type having CB – 30 and CT connector shall be of link type it can be shorted for testing or checking circuit.

1.21 CENTRE OF GRAVITY:

1.21.1 The center of gravity of the assembled transformer shall be low and as near the vertical centerline as possible. The transformer shall be stable with or without oil.

1.22 ACCESSORIES:

1.22.1 Each transformer shall be provided with the following accessories.

i) Dial Image sensing type thermometers for oil:
 a) For ONAN / ONAF and ONAN / OFAF Transformers:
 The dial type indicating thermometers of robust baton mounted on the side of the transformer at a convenient height to read temperature in the hottest part of the oil and fitted with alarm and trip contacts and contacts for switching in and switching out the cooling system at pre-determined temperatures.
 b) For OFAF Transformers:
 A dial Image sensing type thermometer for indicating oil temperature fitted with maximum pointer and adjustable alarm and trip contacts.
 The OTI shall be compatible for remote SCADA operation.

ii) On winding hot spot thermometer detector in one winding of each phase, having 4 sets of contacts, as under:
 a) For ONAN / ONAF & ONAF / ONAF Transformers:
 It shall be indicating type, responsive to the combination of top temperature and winding current, calibrated to follow the hottest spot temperature of the transformer winding. The winding temperature detector shall operate a remote alarm and trip at pre-determined independent temperature in the event the hottest spot temperature approaches a dangerous value.
 b) FOR ONAN / ONAF & ONAN / OFAF type transformers:
 In case of ONAN / ONAF or ONAN / OFAF type transformers, it shall automatically actuate the fans / pump also.
 c) Accuracy class of WTI shall be +/- 1.5% or better.
 d) Any special cable required for shielding purpose, for connection between cooler control cabinet and remote WTI control circuit, shall
be in the scope of supplier. Only one RWTI with a four point selector switch shall be provided for all the windings. The WTI shall be compatible for remote SCADA operation.

iii) One magnetic type oil level gauge with low alarm contacts and dial showing minimum, maximum and normal oil levels. The gauge shall readable from the transformer base level. A low gas pressure electric alarm device shall also be provided, if the transformer is equipped with inert gas pressure equipment.

iv) One oil-filling valve (inlet).

v) One oil drain valve.

vi) One filter valve located at the top of tank on the HV side.

vii) One filter valve located near the bottom of tank of the HV side of the transformer.

viii) Oil sampling devices.

ix) Pressure relief device:
A safety valve of the chimney type with an equalizer pipe interconnecting the top of the conservator and upper most part of the safety valve should be provided to prevent rise of oil in the safety valve, pipe. A stopcock should be provided in the inter-connecting pipe. An air release cock shall also be fitted in convenient position. The safety valve pipe shall preferably take off from the side of the transformer tank near to the tank cover and not from top of tank cover.

x) A Buchholz relay with alarm and tripping contacts to detect accumulation of gas and sudden changes of oil pressures, complete with two shut-off valves and flange coupling to permit easy removal without lowering oil level in the main tank, a bleed valve for gas venting and test valve. The relay shall be provided with a test cock suitable for a flexible pipe connection for checking its operation & taking gas sample. A copper or Stainless Steel tube shall be connected from the gas collector to a valve located at 1200 mm above ground level.

xi) Heat exchangers or radiators complete with pumps, motors, fans etc., described in Clause 1.18.

xii) a) An oil conservator or
b) Oil preserving equipments complete in all respect as described in Clause 1.18.

xiii) Eye bolts and lugs on all parts for ease of handling.

xiv) Four grounding terminals; one **on each side of transformer**.

xv) Diagram and rating plate.

xvi) One set of equipment for control, protection, indication and annunciation for each transformer comprising motor contactors, detecting elements or devices, indicating apparatus, instruments relays, annunciations etc.

xvii) Suitable weatherproof cubicle for housing the control equipment, terminals blocks etc, (one for each transformer) and one indoor cubicle for each transformer for remote control of radiators, on load tap changer alarm and indicating devices.
xviii) Dehydrating Filter Breather
Silica gel breather to be fitted with conservator shall be designed such that:
 a) It is of clear view type design so that moisture absorption indication by change in colour of silica gel is visible from a distance
 b) Passage of air is possible through silica gel only
 c) Height of breather mounting shall not be less than 1200 mm from rail top level
 d) Size of breather shall be such that it content 5 KG of silica gel in it
 e) The nos. of breathers shall be Three or more as required for main conservator and shall be Two for OLTC conservator
 f) Silica gel is isolated from atmosphere by an oil seal.

xix) Conservator and buchholtz relay for on load tap changer.
xx) Suitable terminal connectors for HV, LV & Neutral bushings.
xxi) Suitable ladder or climbing devices.
xxii) Tap changer remote control panel complete with all accessories to be installed in the Purchaser's control room.
xxiii) A **TWIN** tinned copper strip grounding conductor of 50 x 6 mm size shall be provided from the neutral terminal to transformer base for connection to the sub-station grounding grid. Necessary pin insulators, clamps, bolts etc. shall be supplied for this grounding purpose. Neutral bushing to grounding conductor connection shall be made through twin copper flexible strip of size 50 x 10 mm.

xxiv) Inspection opening and covers
xxv) Protected type mercury or alcohol in glass thermometer
xxvi) Bottom and top filter valves with threaded male adaptors, bottom
xxvii) Rating and diagram plates on transformer and auxiliary apparatus
xxviii) Flanged bi-directional wheel with anti earth quake clamps
xxix) Cooler control cabinet
xxx) Bushing CTs
xxxi) Oil flow Indicator ***with alarm contacts***
xxxii) On Load Tap Changing Gear
xxxiii) Drain valves/plugs shall be provided in order that each section pipe work can be drained independently
xxxiv) Terminal Marking plates of Stainless Steel sheet having minimum thickness of 2 MM
xxxv) Valves Schedule plates of Stainless Steel sheet having minimum thickness of 2 MM
xxxvi) Skids at the base of transformer.
xxxvii) Stranded Copper double PVC, control cable of 1100 V grade.

xxxviii) Fiber Optic sensor temperature indicator system: Temperature measurement of Oil and winding shall also be done using Fiber Optic Sensors, meeting following criteria:

1. System shall be fiber optic rugged, proven technology. The probes shall be directly installed in each phase of transformer to measure the winding hotspot and top oil temperature. There will be total four probes inside the transformer, out of which one probe should be installed at top of the transformer for the detection of top oil temperature.
2. The remaining three (3) Fiber Optic probes should be installed in each phase at the hottest spots of each of the phase windings. The locations of the probe shall be proposed by the Manufacturer and locations finalized by agreement of the purchaser.

3. Probes shall be able to be completely immersed in hot transformer oil; they shall withstand exposures to hot kerosene vapor during the transformer installation drying process.

4. Temperature range of the system should be -30ºC to +200 ºC & accuracy of ±1% with no recalibration required.

5. Probes shall be 200ìm all silica double PFA Teflon jacketed, Kevlar cabled fiber with perforated outer jacket to allow complete oil filling and white Teflon protective Helix wrap for improved visibility and mechanical strength.

6. System should include analog outputs for each measurement channel. Temperature resolution of the analog outputs shall be ±0.1 ºC and the systems shall offer a user programmable temperature alarm outputs with 6 relays, alarm lights and controller system status indicators. All inputs and outputs of the system shall meet the requirements of surge test of IEEE C37.90.1-1989 in which a 3000V surge is applied to all the inputs and outputs without permanent damage to the instrument.

7. The system shall be capable of retaining temperature data of 90 or more days at rate of One reading per minute and should retain maximum temperature of each channel until reset.

8. The manufacturer should submit data showing that the probes are located in the hottest point of the winding.

9. The Fiber Optic cable should be brought out of the main tank through tank wall penetrator feed through plate. The feed through plate shall be welded on the tank. The external fiber optic extension cable shall then be run to main control cabinet, routed inside the conduits with large bend radiuses.

10. The controller shall be housed in cooler control cabinet. Temperature rise test measurements shall be made with FO thermometers. The equipment shall be operational during temperature tests and demonstrated during these tests. During probe verification, the hottest probes for each phase shall be identified, and temperature data for all probes recorded and reported in the test report.

11. Transformer manufacturer shall confirm for full guaranteed performance of transformer with provision of FO sensors system. FO system shall cover all required accessories to indicate temperatures at local, remote and shall be SCADA compatible. Suitable change over facility of alarm & control contacts shall be provided for conventional thermal image type temperature indicators and fiber optic temperature indicators.

12. The FO system shall have suitable length of FO cable, sensor and probes.
13. The output of FO system shall be suitable for PC interface with USB port. All required softwares shall be provided.

14. Any other accessories required for satisfactory operation of fiber optic sensor temperature measurement system shall be provided.

15. All the type tests reports as per relevant standard shall be submitted with the technical bid. Acceptance tests shall be performed as per relevant standard.

16. Services of FO system supplier during manufacturing, testing, commissioning and after sales even beyond guarantee period shall have to be arranged and provided by the bidder.

1.22.2 The equipment and accessories furnished with the transformer shall be suitably mounted on the transformer case of operation. Inspection and maintenance and the mounting details shall be subject to the approval of the purchaser. All valves shall be provided either with blind companion flanges or with pipe plugs for protection.

1.22.3 Indication, alarm and relay equipment shall have contacts suitable for operation with 110 V DC supply.

Any other connections or appliances recommended by the manufacturer for the satisfactory operation of the transformer shall be given.

1.23 TERMINALS:

1.23.1 The bushing shall be equipped with terminals suitable for connection with 4" IPS tube for 400 kV and twin moose ACSR conductor for 220 kV terminals.

1.24 CURRENT TRANSFORMERS:

1.24.1 The bidder shall include in the scope of supply the multi ratio, type turret mounted current transformer on all phases of HV, LV & neutral leads of the power transformers for restricted earth fault protection, as well as for standby earth fault / transformer differential protection. Also winding CT of required ratio shall be provided in each phase.

1.25 TERMINAL MARKING:

1.25.1 Each terminal including the neutral shall be clearly marked on both the primary and secondary side in accordance with the diagram of connection supplied with the transformers.

1.26 CLEANING AND PAINTING:

1.26.1 Before painting or filling with oil or compound oil, un-galvanized parts shall be completely cleaned and free from dust, sealed and grosses and all external rough surfaces on casting shall be filled by metal deposition. The interior of oil transformer tanks and other filled chambers and internal structural steel
work shall be cleaned of all sealed and rust by send blasting or other approved method. These surfaces shall be painted with an oil resisting varnish or paint.

1.26.2 Except for nuts, bolts and washers all external surfaces shall receive a minimum of three coats of paint. The primary coat shall be applied immediately after cleaning. The second coat shall be of oil paint of weather resisting nature. The final coat shall be of glossy, oil and weather resisting non-fading paint.

1.26.3 All internal surfaces of mechanism chambers and kiosk except those, which have received anticorrosion treatment, shall receive three coats of paints applied to the thoroughly cleaned metal surfaces. The final coat shall be of light coloured anti-condensation mixture. Any damage to paint work incurred during transport and erection shall be made good by thoroughly cleaning the damaged portion and by applying full number of coats of paints.

1.26.4 All steel surfaces exposed to weather shall be given primary coat zinc chromate, second coat of oil & weather resistant paint of a colour distinct from primary and final two coats of glossy oil & weather resistant light grey paint in accordance with shade no. 631 of IS: 5. All paint shall be carefully selected to withstand heat & extremes of weather. The paint shall not scale off or crinkle or be removed by abrasion due to normal handling. The minimum thickness of outside painting of tank shall be 20 microns per coat the total thickness shall be within 70 to 100 microns.

1.27 PACKING AND TRANSPORT:

1.27.1 Transportation:
The bidder shall dispatch the transformer filled with oil or in an atmosphere of Dry Air or Nitrogen. The bidder shall take care of the weight limitation on transport and handling facility at site. Necessary arrangement shall be ensured by the bidder to take care of pressure drop of Dry Air/Nitrogen during transit and storage till completion of oil filling during erection. A gas pressure testing valve with necessary pressure gauge and adaptor valve shall be provided. The transformer shall be fitted with sufficient number of impact recorders during transportation to measure the movement due to impact in all three directions. The impact recorder shall be provided with suitable communication port (USB port) to download data at any time. The impact recorder shall be Return after submission of all the data in hard and soft copy.

1.27.2 All parts shall be adequately marked to facilitate field erection.

1.27.3 In case of synthetic resin bonded paper type bushing is offered; special attention shall be paid in packing so as to avoid moisture ingress. The details of the bushing and the method of packing shall be stated in the bid.

1.27.4 Loose Material e.g. bolts nuts etc. shall be packed in gunny bags and sealed in polyethylene bags with proper tagging. Component containing glass shall be carefully covered with shock absorbing protective material. All flanges etc. which are prone to scratches shall be provided with wooden caps bolted in place. Fragile Material shall be securely braced within the containers or otherwise amply fastened and packed to prevent shifting or rattling. Soft non-hygroscopic packing materials shall be placed between hard packing
Materials and fragile equipment. Article which do not completely filled the selected container must be cushioned, braced, fastened or blocked to prevent damage to the article itself or destruction of container. Inner bracing or blocking must be such that content’s weight is distributed over entire interior surface rather than concentrate on one or two critical points. All opening in the equipment / accessories shall be tightly covered, plugged or capped to prevent foreign material to enter in.

1.27.5 Any material found short / damaged inside the intact packing shall be supplied at no extra cost to the purchaser.

1.28 LABELS:

1.28.1 Lables shall be provided for all apparatus such as relays, switches, fuses contained in cubicles or marshalling kiosk.

1.28.2 Labeling shall be clear, concise and adequate and shall be of standard size.

1.28.3 Descriptive labels for mounting indoor or inside cubicles and kiosk shall be of material that will ensure permanence of the lettering. Danger notices shall have red lettering on a white background. All plates shall be of material, which will not be corroded.

1.28.4 Lables shall be attached to panels with brass screws or with steel screws, which have received rust preventive treatment.

1.29 INSPECTION:

a) The contractor shall carry out a detailed inspection and testing program for manufacturing activities of the various components. An indicative program of inspection as envisaged by the Engineer is given below. This is not, however, intended to form a comprehensive program, as it is bidder’s responsibility to draw up and carry out such a program duly approved by the Engineer.

b) Cost of Inspection / test is to be borne by the bidder.

c) Additional tests, if required, are to be deemed as included in scope of work.

d) Stages of inspection and owners participation would be defined and shall be as per purchaser requirement.

e) The bidder shall guarantee that the goods are new and of high quality and the goods will be free from defects in design.

TANK AND CONSERVATOR:

a) Certificates of chemical analysis and material tests of plates.

b) Welder’s and weld procedure qualification.

c) Testing of electrodes for quality of base materials.

d) Inspections of major weld preparation.

e) Crack detonation of major strength would seems by dye penetration test.

f) Measurement of film thickness.

i) Oil insoluble varnish.
ii) Zinc chromate paint.
iii) Light gray paint.
g) Check correct dimensions between wheels, demonstrate twining of wheels through 90° and further dimensional check.
h) Check for physical properties of materials for lifting lugs jacking pad etc. All load bearing welds including lifting lug welds shall be subjected to NDT.
i) Leakage test of the conservator.
j) Certification of all test results.

CORE:

a) Samples testing of core material for checking specific loss, bend properties, magnetization characteristics and thickness.
b) Check on the quality of varnish if used on the stampings.
c) i) Measurement of thickness if used on the stampings.
 ii) Solvent resistance test to check that varnish does not react in hot oil.
 iii) Check over all quality of varnish on stamping to ensure uniform shining, colour, and no bars spots; No over burnt varnish layer and no bubbles on varnished surface.
d) Check on the amount of burrs.
e) Bow check on stampings.
f) Check for the overlapping stampings. Corners of the sheets are to be apart.
g) Visual and dimensional check during assembly stage.
h) Check for inter laminar insulation between core sections before and after pressing.
i) Check on completed core for measurement of iron loss and check for any hot spot by exciting the core so as to induce the designed value of flux density in the core. The losses shall be actually measured on built up core with dummy turns or can be demonstrated through suitable software to GETCO representative and the report for the same shall be submitted. However, during final inspection the losses shall be actually measured & the same shall be within guaranteed losses.
j) Visual and dimensional checks for straightness and roundness of core, thickness of limbs and suitability of clamps.
k) High voltage test (2 kV for one minute) between core and clamps.
l) Certification of all test results.

INSULATING MATERIAL:

a) Sample check for physical properties of material.
b) Check for dielectric strength.
c) Visual and dimensional checks.
d) Check for the reaction of hot oil on insulating materials.
e) Certification of all tests results.
WINDING:

a) Sample check on winding conductor for mechanical properties and electrical conductivity.
b) Visual dimensional checks on conductor for scratches, dent marks etc.
c) Sample check on insulating paper for PH value, electric strength.
d) Check for the reaction of hot oil on insulating paper.
e) Check for the bonding of the insulating paper on conductor.
f) Check for absence of short circuit between parallel strands.
g) Check and ensure that physical condition of all materials taken for winding is satisfactory and free of dust.
h) Check for brazed joints wherever applicable.
i) Measurement of voltage to be carried out when core / yoke is completely restacked and all connections ready.
j) Conductor enamel test for checking of cracks, leakage and pin holes.
k) Conductor flexibility test.
l) Heat Shrinkable test for enameled wire.
m) Certification of all test results.

CHECK BEFORE DRYING PROCESS:

a) Check conditions of insulation in the conductor and between the windings.
b) Check insulation resistance between high voltage connection cable and earth other live parts.
c) Check insulation resistance between low voltage connection and earth & other parts.
d) Insulation test of core earthing.
e) Check for proper cleanliness and absence of dust etc.
f) Certification of all test results.

CHECK DURING DRYING PROCESS:

b) Check for completeness of drying.
c) Certification of all test results.

ASSEMBLED TRANSFORMER:

a) Check completed transformer against approved outline drawing, provision for all fitting, finish level etc.
b) Taking test on all the assembled transformers.

The contractor shall also prepare a comprehensive inspection and testing program for all bought out / sub-contracted items and shall submit the same to the Engineer for approval. Such program shall include in following:

i) Buchholtz Relay.
ii) Sudden pressure rise relay.
iii) Axels and wheels.
iv) Winding temperature indicator for local and remote mounting.
v) Oil temperature indicators.
v) Bushing.
vii) Bushing Current Transformer.
c) Test to check effective shielding of the tank
d) Jacking test with oil on all the assembled transformers
e) Dye penetration test shall be carried out after the jacking test

PRE-SHIPMENT CHECKS AT MANUFACTURER’S WORKS:
a) Check for interchangeability of component of similar transformer for mounting dimensions.
b) Check for proper packing and preservation of accessories like radiators, bushings, explosion vent, dehydrating breather, rollers, buchholtz relay, control cubicle, connecting pipes, conservator tank.
c) Check for proper provision of bracings to arrest the movement of core and winding assembly inside the tank.
d) Gas tightness test to conform tightness.
e) Derivation of leakage rate and ensure adequate reserve gas capacity.

INSPECTION AND TESTING AT SITE:
The contractor shall carry out a detailed inspection and testing program for field activities, namely, covering area right from the receipt of materials stage upto commissioning stage. An indicative program of inspection as envisaged by the Engineer is given below:

This is however not intended to form a comprehensive program, as it is contractor’s responsibility to draw up and carry out such a program duly approved by the Engineer.

RECEIPT AND STORAGE CHECKS:
a) Check and record condition of each package, visible part of transformer etc. for any damage.
b) Check and record the gas pressure in the transformer tank as well as in the cylinder.
c) Visual check for welding of core and coils before filling up with oil and also check condition of core and winding Ingo rally.

1.30.1 INSTALLATION CHECKS:

Test on oil samples taken from main tank top and bottom and cooling system as per IS: 335. Sample shall be taken only after the oil has been allowed to settle for 24 hours.
a) Check the whole assembly for tightness, general appearance etc.
b) Oil leakage tests.
c) The contractor shall warrant that oil furnished is in accordance with the specifications given in this specification.
1.30.2 **COMMISSIONING CHECKS:**
 a) Check the colour of silica gel breather.
 b) Check the oil level in the breather housing, conservator tank, cooling system, condenser bushing etc.
 c) Check the bushings for conformity of connection to the line etc.
 d) Check for correct operation of oil protection and alarms.
 i) Buchholtz relay.
 ii) Excessive winding temperature.
 iii) Low oil flow.
 iv) Excessive oil temperature.
 v) Low oil level indication.
 e) Check for adequate protection on electric circuit supplying the accessories.
 f) Insulation resistance measurement for
 i) Control wiring.
 ii) Main winding.
 g) Check for cleanliness of the transformer and the surrounding.

1.30.3 **TESTING:**

The transformer shall be tested in the presence of purchaser's representative. All tests (routine and type tests) shall be witnessed by him. All the tests shall be performed in compliance of IS: 2026 - 1962 (as amended up to date). **All the instruments, meters, etc., used for testing shall be duly calibrated at NABL laboratory and necessary calibration certificate shall be made available during inspection.** The following tests shall be made on the transformer.

1.30.3.1 **ROUTINE TESTS:**

All the tests shall be performed in compliance of IS:2026 (as amended up to date) with dielectric tests corresponding to Method 2 shall be carried out on each transformer:

a) Resistance of each winding.

b) Turn ratio for all sets of windings on each tap.

c) Polarity and phase relationship.

d) Impedance between each pair of winding.

e) Excitation losses at 90, 100 and 110 % rated voltage measured by the average voltmeter method.

f) Positive phase sequences impedance measurement on three phase transformers.

g) Regulation at rated level and unity, 0.9, 0.8 lagging P.F.

h) Load losses, measured at rated frequency, by applying a primary voltage sufficient to produce rated current in the windings with the secondary windings short-circuited.

i) Separate source voltage with stand test.

j) Induced over voltage with stand test.
k) Auxiliary losses (fans, Pumps etc.)
l) SFRA test (at factory and at site)
m) Zero Sequence impedance test
n) Tests on tap-changer (IEC:214)
o) Tan delta & capacitance test for bushings and windings
p) Tests on transformer oil including DGA on selected sample as per IS:9434/IEC:567, before and after temp rise test and at final stage before dispatch. Corrosive sulphur detection test as per ASTM D1275 subjecting oil for 150°C for 48 hrs.
q) Magnetic Circuit test:
 After assembly of each core shall be tested at 2 kV between side plates, structural steel works etc. for 1 Minute
r) Tank leak test at 5 psi (35 kN/m2) for 12 hrs with oil & 1 hr with air.
s) Magnetic Balance & current test on all winding
t) HV withstand test on auxiliary equipments and wiring
u) Measurement of Insulation Resistance
v) Measurement of acoustic noise level
w) Measurement of harmonics of no load current
x) Measurement of Partial Discharges of transformer
y) Vacuum test for tank at 25 bar for 1 hr.
z) Measurement of no load current with 415 V AC supply on LV side.
aa) Calibration of temperature indicators and relays.
bb) CT testing viz. IR, ratio, polarity, excitation etc.
cc) Tests on Fiber Optic system
dd) Tests on Air cell
ee) Temperature rise with DGA at initial, after Temp rise test and at final stage before dispatch.
ff) Lightning impulse test on all windings
gg) ACLD test

1.30.3.2 TYPE TESTS:

Following type test reports as mentioned below and as specified in IS: 2026 (amended up to date) shall be submitted for the offered type rating of transformer, invariably with the technical bid. Bid without type test reports will not be considered for evaluation. The type test reports shall not be older than FIVE years and shall be valid up to expiry of validity of offer.

a) Temperature rise test
 The temperature rise test shall be conducted at a tap for the worst combination of loading. Supplier before carrying out such test shall submit detailed calculation showing alternative possible, on various taps and for three types of ratings of the transformer and shall recommend that results in highest temperature rise for the test.
Gas chromatographic analysis on oil shall also be conducted before and after this test and the values shall be recorded in the test report. The sampling shall be in accordance with IEC 567. For the evaluation of the gas analysis in temperature rise test the procedure shall be as per IS:9434 (based on IEC:567) and results will be interpreted as per IS:10593 (based on IEC:599). *The temperature rise measurements shall be made with the Fiber Optic Thermometers & conventional OTI/WTI. The FOS shall also be operational during temperature tests and demonstrated during these tests. During probe verification, the hottest probes for each phase shall be identified, and temperature data for all probes recorded and reported in the test report. Data obtained from FOS and conventional OTI/WTI shall be compared however, both values should satisfy the commitment.*

b) Impulse tests shall be made on three limbs of transformer. The test sequence shall be with chopped wave.
c) Vacuum and pressure test
d) Tests on OLTC

Important note for type tests: The type test report shall be submitted for the offered class and rating of transformer. However, the type test report for higher class/rating can be accepted for scrutiny of technical bid but the same test/s shall have to be carried out on the offered class/rating transformer. Bidder shall invariably confirm to carry out the required type test/s, special tests, before commencement of supply, without affecting delivery schedule, free of cost, at NABL approved laboratory or at suppliers works in presence of GETCO representative, in the event of order.

SPECIAL TEST: Following test reports shall be submitted for the offered type rating of transformer & bought outs, invariably with the technical bid.

- e) Zero phase sequence impedance measurement.
- f) Degree of protection (IP55) for control cabinets & RTCC panel, OLTC driving mechanism, terminal boxes of PRV, MOG, Buchholz Relay, pump motors, fans, etc.
- g) Short Time Current withstand test on offered HV and LV terminal connectors for 40 kA 3 sec.
- h) Measurement of acoustic noise level
- i) Measurement of power taken by all auxiliaries
- j) Measurement of harmonic level in no load current
- k) Measurement of transferred surge in LV due to Lightning impulse on HV & IV

CALCULATIONS: Following calculations shall be submitted with bid.

a) Thermal and Dynamic ability to withstand terminal short circuits
b) Cooling calculations for ONAN, ONAF & OFAF.

If the above tests are carried out at bidder works then the bidder shall have to repeat these tests again on any one unit without affecting delivery schedule at no extra cost to GETCO. The necessary confirmation shall invariably be submitted with the technical bid otherwise the offer shall be evaluated accordingly.
1.30.3.3 Radiators, valves and other parts necessary with complete transformer shall be tested for leaks and strength applying to the complete tank filled with oil air pressure not less than 0.7 atmospheres for a period of 24 hours or not less than 1.0 atmosphere for a period of 6 hours.

1.30.4 TEST ON TRANSFORMER TANK:

1.30.4.1 In addition to the routine tests on welds in the tank, the following type tests shall be carried out on one of the transformer tanks in presence of GETCO representative.

1.30.4.2 a) VACUUM TEST:

The transformer tank without oil shall be subjected to a vacuum of 760 mm of mercury. The permanent deflection of the flat plates after removal of vacuum shall not exceed the values specified below.

<table>
<thead>
<tr>
<th>Horizontal length of plate (mm)</th>
<th>Permanent deflection(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 760</td>
<td>5</td>
</tr>
<tr>
<td>760 to 1270</td>
<td>6</td>
</tr>
<tr>
<td>1300 to 1780</td>
<td>8</td>
</tr>
<tr>
<td>1800 to 2030</td>
<td>10</td>
</tr>
<tr>
<td>2050 to 2280</td>
<td>11</td>
</tr>
<tr>
<td>2300 to 2540</td>
<td>13</td>
</tr>
<tr>
<td>2560 to 3050</td>
<td>16</td>
</tr>
<tr>
<td>3075 above</td>
<td>19</td>
</tr>
</tbody>
</table>

b) PRESSURE TEST:

The transformer tank along with radiators, conservator and other fittings shall be subject to a pressure corresponding to twice the normal head of oil in the transformer or normal pressure plus 0.36 Kg / Sq. cm, whichever is lower. The permanent deflection of plates after release of excess pressure shall not exceed the figures specified under vacuum test.

C) PRESSURE RELIEF TEST:

Pressure Relief Device with its diaphragm in position shall be subject to an increasing oil pressure. This device shall operate before reaching the pressure specified in the pressure test at (b). Following routine tests shall be performed on PRD

i) Air pressure test
ii) Liquid pressure test
iii) Contact test
iv) Leakage test
v) Dielectric test

1.30.5 TEST AT SITE:

After erection at site, the transformer shall be subject to the following tests:
i) Insulation resistance test.
ii) Ratio and polarity test.
iii) Temperature rise test with maximum possible load.
iv) Dielectric test of oil.
v) SFRA test

1.30.6 TYPE TESTS ON BOUGHT OUT ITEMS:

1. Bushing (Type test as per IS:2099/IEC:137): Thermal stability, measurement of PD, PF, switching impulse voltage withstand test etc.
2. OLTC (Temp Rise of contact, Short circuit current test, Mechanical test, Dielectric test, etc., as per IEC:60214 and IP:55 test on driving mechanism box)
3. Buchholz relay (as per IS:3637) & IP-55 on terminal box
4. Air cell (Flexible air separator) – Oil side coating, Air side under coating, Air side outer coating and coated fabric as per IS:3400/BS:903/IS:7016.
5. Oil pump – vacuum test, oil pressure test at 1 kg/cm2 for 24 hrs., Temperature rise test by resistance method, IP-55 for terminal box.
7. MOG & terminal box for IP-55 degree of protection
8. Tests on fiber optic system

1.31 TESTS ON OLTC:

1.31.1 The various test (routine and type) as stipulated in the IEC Publication No. 60214 (as amended up to date) shall be carried out.

1.31.2 Type test certificate copies of oscillogram as called for in IEC Publication No. 60214 shall be furnished by the supplier.

1.32 TEST REPORTS:

1.32.1 After all the tests have been completed 4 copies of each test report shall be furnished to the purchaser for this approval prior to the dispatch of equipment. Soft copy of test reports for tests results obtained from software shall be submitted for approval and record.

1.32.2 All the reports of inspections like stage, acceptance, routine & type tests carried out on each transformer including test certificates for bought out items, in bound volume, shall be submitted before dispatch. Also one copy shall be sent along with transformer.

1.33 FURTHER TESTS:

1.33.1 The purchaser reserves the right of having any other reasonable test carried out at his own expense to ensure that the transformer complied with the requirements of this specification.

1.34 LOSS/DAMAGES:
1.34.1 The Purchaser shall not be responsible for any damage to the equipment during commissioning if such damage results from faulty or inadequate action.

1.34.2 Purchaser shall not be liable for any loss, damage or injury to property or persons at the installation site.

1.35 TECHNICAL AND GUARANTEED PARTICULARS:

1.35.1 The bidder shall furnish all guaranteed technical particulars as called for in Section - III, Schedule - A of this specification. Particulars, which are subject to guarantee, shall be clearly marked. Bid not containing this information are likely to be rejected.

1.36 INSTRUCTION MANUALS:

1.36.1 Six copies of operation, maintenance and erection manuals in English language for each transformer shall be supplied one month prior to the dispatch of the equipment. The manuals shall be bound volumes and shall contain all the drawings and information required for erection, operation and maintenance of the transformer. The manuals shall include amongst other the following particulars:

a) Marked erection prints identifying the component parts of the transformer as dispatched with the assembly drawings.

b) Detailed dimensions, assembly and description of all the components.

c) Detailed view of core & winding assembly, winding connections and tap changer construction, etc.

d) List of spare parts.

1.37 DEVIATION FROM SPECIFICATION:

1.37.1 All deviations from this specification shall be separately listed in specified Schedule, in the absence of which, it will be presumed that the provision of the specification are complied with by the bidder.

1.38 TRANSFORMER LOSSES & EVALUATION OF BID:

The transformers are to be designed with minimum permissible losses.

1.38.1 The quoted losses shall be considered as maximum, without any positive tolerance. The bidders are, however, at liberty to quote the guaranteed losses. The evaluation of the offer shall be done on basis of maximum guaranteed loss.

In case of any order, if the figure/s of losses during test are found, higher than the figures guaranteed for maximum losses without any positive tolerance on individual components of losses, the transformer will, at the option of the
purchaser / owner be rejected, or accepted with the reduction in prices as under. The measurement of losses shall be carried out with 3 (Three) Watt meter method only and CTs, PTs and meters used for these measurements shall be of class of accuracy of 0.2.

However, no weight age shall be given for supply of transformer, with losses (measured during routine tests) less than the guaranteed losses.

1.38.2 For the purpose of evaluation of bids, the quoted losses shall be compared for all the bidders of particular tender.

The following formula adopted by the GETCO for working out comparable costs with difference in prices and losses is:

\[
\text{Capitalized cost of transformer} = IC + 1,60,000 \times Wi + 70,000 \times Wc + 60,000 \times Wp
\]

Where, \(IC \) = Cost of Transformer; \(Wi \) = Iron losses in KW; \(Wc \) = Copper losses in KW; \(Wp \) = Auxiliary loss in KW.

1.39 PENALTY FOR HIGHER LOSSES:

In case of order if the figures of losses measured during tests or in service are found to be higher than the figures guaranteed, at the option of the GETCO, will be rejected or accepted with the reduction in price under.

For Iron loss = Rs. 1,60,000/- per kW
For Copper loss = Rs. 70,000/- per kW
For Auxiliary loss = Rs. 60,000/- per kW

1.40 REJECTION:

1.40.1 The Purchaser may reject transformer, if any of the following conditions during or service arises:

i) No load losses or load losses exceed the guaranteed value.
ii) Impedance value exceeds the guaranteed value by ± 10% or more.
iii) Oil or winding temperature rise exceeds the specified value by 5 deg. C.
iv) Transformer fails on impulse test.
v) Transformer fails on power frequency voltage withstand test.
vi) The difference in impedance values of any two phase during single phase short circuit impedance test exceeds 2% of the average value guaranteed by the manufacturer / contractor.

vii) Transformer is proved to have been manufactured not in accordance with agreed specification.

1.40.2 The Purchaser reserves the right to retain the rejected transformer and use it until the bidder replaces the defective transformer by a new transformer, within a reasonable period, at no extra cost to the GETCO. In such case the transportation, loading, unloading, inspection, erection, testing & commissioning charges shall be bourn by the bidder.
1.41 TRAINING TO ENGINEERS:

1.41.1 The successful bidder will be required to grant training for not less than two Engineers nominated by the GETCO, as follow, in his works and more particularly in the manufacture, assembly, operation and maintenance of transformer and other accessories indicated in this specification. Training in respect of Fiber Optic system, On line moisture and multi gas in oil analyzer, Nitrogen injection system for protection, AVR relay, etc., shall also be arranged. The bidder shall state the general condition of training and number of Man days (minimum 15) for training for which such training will be arranged by him. GETCO may nominate different Engineers for different items.

1.41.2 Bidder shall at his cost arrange for the above training facilities and in addition shall bear all living expenses plus inland travel expenses of all the trainees. The Purchaser shall only pay to and fro passage of the trainees. Bidder shall indicate following in the prices schedule.

a) The lump sum amount of training for the above training facilities.

b) Price reduction / addition for number of trainees specified herein.

1.41.3.

1.41.4 If GETCO Engineer will return without inspection of offered equipments due to non-readiness of materials at their works than financial loss to the GETCO for deputing their representative will be recovered from the concerned supplier.

1.42 TRANSFORMER OIL:

1.42.1 (1) Manufacturers / Suppliers will have to supply the transformer oil as per GETCO’s Specification of Transformer oil attached herewith at APPENDIX – ‘A’.

(2) At the time of inspection of transformer, bidder has to furnish the certificate / test reports of transformer oil purchased. Same should be meeting to GETCO’s transformer oil specification. At the time of inspection of the each power transformer, the supplier of the transformer shall arrange to take a sample of the transformer oil from the power transformer under testing in presence of GETCO representative and the supplier shall arrange at their cost the testing of the transformer oil sample as per Cl. 5.3 of IS: 1866 - 1994 with latest amendments thereof at M/s. ERDA or any other Govt. recognized laboratory to confirm the quality of the transformer oil. The result of the same shall be submitted for approval.

(3) After commissioning the transformer at site, in presence of representative, commissioning Engineer of Supplier of transformer, 2 nos. of joint samples may be collected and sealed. One sample will be
sent for testing as per Cl. 5.3 of IS: 1866 - 1994 with latest amendments thereof to M/s. ERDA, Baroda or Government approved Laboratory to confirm the quality of transformer oil and second sample will be preserved. In case of dispute for results of first sample, 2nd sample should be got tested through any other approved test house by GETCO and results shall be binding to suppliers.

(4) Transformer shall be supplied complete with guaranteed quantity of insulating oil including first filling and 10% excess oil. The transformer oil shall conform to the latest edition of IS:335 & IEC:295.

1.43 QUALITY ASSURANCE PLAN:

The bidder shall invariably furnish following information’s along with his offer, failing which his offer shall be liable for rejection. Information shall be separately given for individual type of equipments offered.

1. QAP for incoming material, in process and final checks and testing.
2. Statement giving list of important raw materials, names of sub suppliers for the raw materials, list of standard according to which the raw materials are tested. List of tests normally carried out on raw materials in presence of bidder’s representatives, copies of test certificates.
3. Information and copies of test certificates as in (i) above in respect of bought out accessories.
4. List of manufacturing facilities available.
5. Level of automation achieved and list of areas where manual processing exists.
6. List of areas in manufacturing process, where stage inspections are normally carried out for quality control and details of such tests and inspections.
7. Special features provided in the equipment to make it maintenance free.
8. List of testing equipments available with the supplier for final testing of transformer specified and test plant limitation, if any, for the special acceptance and routine tests specified in the relevant standards. These limitations shall be very clearly brought out in 'The schedule of divinations' for specified test requirements.
9. Field Quality Plan shall be submitted with the technical bid.
SECTION – II

TECHNICAL SPECIFICATION
FOR 400 kV CLASS AUTO TRANSFORMERS.

SPECIFIC REQUIREMENTS

2.1 SCOPE:

2.1.1 This section covers the specific technical requirements, climatic and isoceranic conditions and system particulars for which the power transformer shall be offered as per the general technical requirements given in Section – I of this specification and the Schedule of requirements specified herein for the various sub-stations.

2.2 CLIMATIC AND ISOCERANIC CONDITIONS:

2.2.1 The climatic conditions under which the equipments shall operate satisfactorily.

(a) Maximum ambient temperature of air in Shade (°C) 50
(b) Minimum ambient temperature of air in shade. (°C) 3.5
(c) Maximum daily average ambient temperature (°C) 40
(d) Maximum yearly average ambient temperature (°C) 30
(e) Maximum relative humidity (%) 95
(f) Average number of thunder storm (days/annum). 15
(g) Average rain fail (cm) 150
(h) Maximum wind pressure (kg / m²) 150
(i) Height above mean sea level (mtr) Not exceeding 1000
(j) Climate: Moderately hot & humid tropical, conducive to rust & fungus growth.
(k) Isoceranic level 30
(l) Earth quake acceleration (g) 0.08X2

2.2.2 All equipment offered shall be suitable for continuous satisfactory operation at the full rated capacity under the above climatic conditions.

2.2.3 Since the sub-station may be near sea shore or industrial area, the equipment offered shall be suitable for heavily polluted atmosphere.

2.3 TYPE AND RATING:

2.3.1 The transformers shall be core or shell type construction, 3 phases, oil immersed, ONAN / ONAF with external heat exchanger and shall be suitable
for outdoor services. The rating and the electric characteristics of the transformers shall be given below.

315 MVA, 400/220 kV

a) Type 3 phase Auto transformer with loaded tertiary winding.

b) i) Rating

ii) Rated Capacity (MVA)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Capacity (MVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV</td>
<td>315</td>
</tr>
<tr>
<td>MV</td>
<td>315</td>
</tr>
<tr>
<td>LV</td>
<td>105</td>
</tr>
<tr>
<td>ONAN</td>
<td>60% of ODAF</td>
</tr>
<tr>
<td>ONAF</td>
<td>80% of ODAF</td>
</tr>
<tr>
<td>ODAF</td>
<td>100%</td>
</tr>
</tbody>
</table>

c) Rated voltage (kV) 400/220/33

d) Highest system voltage (kV) 420/245/36.3

e) System frequency (Hz) 50

f) Type of cooling ONAN / ONAF / ODAF

g) Vector Group YNaOd11

h) Tertiary Winding 33 kV (Loaded)

i) System of grounding Solidly grounded

j) Insulation Level

i) 400 kV:

a) 1.2/50µs full wave impulse voltage withstand level 1300 kVp

b) 1.2/50µs chopped wave impulse voltage withstand level 1300 kVp

c) Switching impulse withstand voltage 1050 kVp

220 kV:

a) 1.2/50µs full wave impulse voltage withstand level 1050 kVp

b) 1.2/50µs chopped wave impulse voltage withstand level 1050 kVp

33 kV:

a) 1.2/50µs full wave impulse voltage withstand level 250 kVp

b) 1.2/50µs chopped wave impulse voltage withstand level 250 kVp

ii) Power frequency withstand voltage (kV)

400 kV (line-neutral)/(line-line) 420 / 630 kV rms

220 kV <460 kV rms

33 kV 95 kV rms

HV neutral 38 kV rms

k) Impedances (%)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV & MV</td>
<td>12.5% (Tolerance - ±10%)</td>
</tr>
<tr>
<td>HV & LV</td>
<td>45% (Tolerance - ±15%)</td>
</tr>
<tr>
<td>MV & LV</td>
<td>30% (Tolerance - ±15%)</td>
</tr>
</tbody>
</table>

l) Tapping range Auto transformer with On Load Tap
Changer for high voltage variation of -10 to +10% in 16 equal steps, of 1.25% each, provided on common end of series winding.

m) Type of tap changers
ON LOAD TAP CHANGER (Resistance Transition type).

n) Connection
HV & MV: Star Auto with neutral LV; Directly earthed delta.

o) Tap control
Full capacity - on load tap changer suitable for group / independent, remote /local electrical and local manual operation and bi-directional power flow.

p) Short circuit level for the system

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>MVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>10000</td>
</tr>
<tr>
<td>132</td>
<td>5000</td>
</tr>
<tr>
<td>66</td>
<td>N. A.</td>
</tr>
<tr>
<td>11</td>
<td>500</td>
</tr>
</tbody>
</table>

q) Creepage distance for bushing

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>Total (mm)</th>
<th>Protected (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>5600</td>
<td>2800</td>
</tr>
<tr>
<td>132</td>
<td>3400</td>
<td>1700</td>
</tr>
<tr>
<td>66</td>
<td>N. A.</td>
<td>N. A.</td>
</tr>
<tr>
<td>11</td>
<td>380</td>
<td>190</td>
</tr>
</tbody>
</table>

r) Service
Outdoor

s) Duty
Continuous

t) Overload capacity
As per IS:6600 – 1972 / IEC354

u) Partial Discharge level
500 pico-columb

v) HV/MV winding neutral end
17.5 kV porcelain without arcing horns

w) Bushings:

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>P F volt</th>
<th>Full</th>
<th>Chopped</th>
<th>Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry Wet</td>
<td>Impulse</td>
<td>Impulse</td>
<td>Impulse</td>
</tr>
<tr>
<td>400</td>
<td>630 630</td>
<td>1425</td>
<td>1425</td>
<td>1050</td>
</tr>
<tr>
<td>220</td>
<td>460 460</td>
<td>1050</td>
<td>1050</td>
<td>--</td>
</tr>
<tr>
<td>Tertiary 33 kV</td>
<td>95 95</td>
<td>250</td>
<td>250</td>
<td>--</td>
</tr>
<tr>
<td>Neutral Bushings 17.5 kV</td>
<td>45 45</td>
<td>95</td>
<td>95</td>
<td>--</td>
</tr>
</tbody>
</table>

2.3.2 The equipment offered shall be suitable for continuous operation under the above conditions at the full rated capacity.

2.3.3 The autotransformers shall in general have constant percentage impedance between HV and LV on all taps. However, in case of parallel operation with the existing transformer,

i) The impedance, vector group, OLTC connection & range etc. of the transformer is to be matched with that of the existing transformer

ii) Necessary provision is to be kept in the transformer control scheme for parallel operation with the existing Master/Follower/Independent/Off type OLTC control system.

iii) Matching of physical dimension, orientation etc. to facilitate interchangeability with the existing transformer, if necessary.

2.3.4 External or internal reactors shall not be used to achieve the HV/LV impedance specified.

2.4 EARTHQUAKE & WIND DESIGN LOADS:
2.4.1 The equipment offered shall be designed to withstand repeated earthquake acceleration of 0.08 x 2 g. and wind loads of 150 kg/m² on the projected area non-simultaneous without damage to component parts and without impairment or operation.

2.5 BUSHING CT:
2.5.1 One multi ratio, turret mounted type, current transformer shall be provided on all Line as well as common neutral lead, Line and neutral CT each for H.V. & L.V. Line as well as neutral shall be provided with following technical details.

<table>
<thead>
<tr>
<th>Voltage Class</th>
<th>corresponding line voltage rating for line bushing CT and corresponding neutral voltage rating of neutral bushing</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) HV side</td>
<td>315 MVA</td>
</tr>
<tr>
<td>(Line as well as neutral)</td>
<td></td>
</tr>
<tr>
<td>No. of cores</td>
<td>TWO</td>
</tr>
<tr>
<td>Ratio</td>
<td>500-1000-2000/1 A</td>
</tr>
<tr>
<td>Accuracy class</td>
<td>PS (As per IS: 2705)</td>
</tr>
<tr>
<td>V_k</td>
<td>≥ 2000 V at highest tap</td>
</tr>
<tr>
<td>I_0 at $V_k/2$</td>
<td>≤ 30 ma</td>
</tr>
<tr>
<td>Resistance</td>
<td>≤ 10 ohms</td>
</tr>
<tr>
<td>Application</td>
<td>Restricted earth fault protection & transformer Differential protection</td>
</tr>
</tbody>
</table>

(B) MV side
(Line as well as neutral)
No. of cores TWO
Ratio 500-1000-2000/1 A
Accuracy class PS (As per IS: 2705)
V_k ≥ 2000 V at highest tap
I_0 at $V_k/2$ ≤ 30 ma
Resistance ≤ 10 ohms
Application Restricted earth fault protection & transformer Differential protection.

2.6 NEUTRAL CT:
2.6.1 One multi ratio bushing type / turret mounted current transformer shall be provided on common neutral lead. In case of 2 winding transformer neutral CT each for HV, LV and neutral comply in with the following requirements:

<table>
<thead>
<tr>
<th>Voltage Class</th>
<th>Corresponding to the voltage rating of neutral bushing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Cores</td>
<td>Two</td>
</tr>
</tbody>
</table>
2.6.2 Any change in the parameters of CT required at the time of detailed engineering will have to be incorporated without any extra cost.

2.7 POWER SUPPLY FOR CONTROLS:

2.7.1 The AC power supply for auxiliaries will be available at 240 volts, 1 phase and 415 V, 3 phases, 50 Hz. The frequency can vary between ± 3% of normal frequency of 50 Hz and voltage can vary from 85 % to 110 % of the normal value.

2.7.2 The DC supply at 110 / 220 Volts will be available from station battery. The DC supply is subject to variation of ± 10 %.

2.7.3 Each of the foregoing supplies will be made available by the purchaser at one terminal for each transformer for operation of accessories & auxiliary equipments. Bidder’s scope shall include distribution this point.

2.8 OIL STORAGE TANK:

2.8.1 General
This specification covers supply of ONE no. of oil storage tank of 25 cubic meter capacity along with complete accessories.

2.8.2 Standard
The oil storage tank shall be designed and fabricated as per relevant Indian Standards e.g. IS: 803 or other internationally acceptable standards.

2.8.3 Specifications
Transformer oil storage tanks shall be tow able & rested on pneumatic types of adequate quality & size. The tank shall be to cylindrical shape & mounted horizontally and made of mild steel plate of adequate thickness. Size of the storage tank shall be follows:

Diameter : 2.5 meter / suitable
Capacity : 25 cubic meters

The tank shall be designed for storage of oil at a temperature of 100ºC.

2.8.3.1 The Bidder may further note that maximum height of any part of the complete assembly of the storage tank shall not exceed 4.0 meters above road top.
2.8.3.2 The tank shall have adequate number of jacking pad so that it can be kept on jack while completely filled with oil. The tank shall be provided with suitable saddles so that tank can be rested on ground after removing the pneumatic tyres.

2.8.3.3 The tank shall be also fitted with manhole, outside & inside access ladder, silica gel breather assembly, inlet & outlet valve, oil sampling valve with suitable adopter, oil drainage valve, air vent etc. Pulling hook on both ends of the tank shall be provided so that the tank can be pulled from either end while completely filled with oil. Bidder shall indicate the engine capacity in horse power to pull one tank completely fitted with oil. Oil level indicator shall be provided with calibration in terms of litre so that at any time operator can have an idea of oil in the tank. Four nos. suitable rubber hoses with couplers and unions each not less than 10 meter long shall also be provided.

2.8.3.4 The internal & external surfaces to be painted shall be short or sand blasted to remove all rust and scale of foreign adhering matter or grease. All steel surfaces in contact with insulating oil shall have painted with two coats of heat & oil resistant anti-corrosive paint. All steel surfaces exposed to weather shall be given primary coat zinc chromate, second coat of oil & weather resistant paint of a colour distinct from primary and final two coats of glossy oil & weather resistant light grey paint in accordance with shade no. 631 of IS: 5. All paint shall be carefully selected to withstand heat & extremes of weather. The paint shall not scale off or crinkle or be removed by abrasion due to normal handling. The minimum thickness of outside painting of tank shall be 20 microns per coat the total thickness shall be within 70 to 100 microns.

2.8.3.5 The tank shall contain a self mounted centrifugal oil pump with inlet and outlet valves, with couplers suitable for rubber houses and necessary switchgear for its control. There shall be no rigid connection to the pump. The pump shall be electrical motor driven and shall have a discharge of not less than 6 kLph with a discharge head of 8 Mtr. The pump motor and the control cabinet shall be enclosed in cubicle with IP55 enclosure.

2.9 Oil Sampling Bottle:
2.9.1 THREE nos. oil sampling bottle suitable for collecting oil sample from transformer and shunt reactors for dissolved gas analysis shall be supplied. Bottles shall be robust enough so that no damage occurs during frequent transportation of samples.

2.9.2 Oil sampling bottle shall be made of Stainless Steel having capacity of ONE litre.
2.9.3 Oil sampling bottle shall be capable of being sealed gas tight and shall be fitted with cocks on both ends.

2.9.4 The design of bottle & seal shall be such that loss of hydrogen shall not exceed 5% per week.

2.9.5 An impermeable oil proof transparent plastic or rubber tube of about 5 mm diameter and of sufficient length shall also be provide with each bottle along with suitable connectors to fit the tube on to the oil sampling valves of the equipment and the oil collecting bottle respectively.
SECTION – III

BIDDING SCHEDULE
(To be filled in and signed by the Bidder)

SCHEDULE ‘A’

SCHEDULE OF GUARANTEED TECHNICAL PARTICULARS
FOR AUTO TRANSFORMERS

1. Name of manufacturer :

2. Normal full load single phase/three phase output:
 H.V. Winding (KVA) :
 M.V. Winding (KVA) :
 Tertiary winding (KVA) :

2.1 Applicable standards :

2.2 Temp. Rise as specified in the specification. :

2.3 Rated frequency :

3. Continuous single phase/three phase output under:
 Site conditions as specified in the specification
 H.V. Winding (KVA) :
 M.V. Winding (KVA) :
 Tertiary winding (KVA) :

4. Type of cooling and corresponding normal: ONAN ONAF ODAF
 Full load output
 H.V. Winding :
 M.V. Winding :
 Tertiary winding :

5. Over load capacity (as per IS:6600) starting from:
 Full load and with Temp. as specified in the Specification (KVA)

6. Normal ratio of transformation:
7. Connection (including vector group reference & symbol):
 H.V. Winding:
 M.V. Winding:
 Tertiary winding:

8. Type of tap changer:

9. Tapping
 a) Number:
 b) Range:
 c) Location:

10. Type of core construction:

11. i) Temp. rise by resistance of winding ($^{\circ}$C):
 ii) Temp. rise in oil by thermometer ($^{\circ}$C):
 iii) Hot spot temp. for which the transformer is designed ($^{\circ}$C):

12. Limit for hot spot temp. for which the transformer is designed ($^{\circ}$C):

13. i) Guaranteed no load loss at rated voltage & rated frequency and 75 $^{\circ}$C average winding temperature:

14. i) Guaranteed load losses at rated current rated voltage, rated frequency and 75 $^{\circ}$C average winding temp. KW (excluding auxiliary losses)
 for ONAN cooling:
 for ONAF cooling:
 for ODAF cooling:

15. a) Auxiliary losses at rated output:
 b) Total losses at normal ratio, rated output, rated voltage, rated frequency and maximum attainable temp. at site including auxiliary losses – KW
16. Exciting current & power factor (Amp. %) :
 i) At normal voltage & frequency :
 ii) At maximum voltage and normal frequency :

17. Efficiency at 75°C Unity P.F. :
 i) On 100% load (%) :
 ii) On 75% load (%) :
 iii) On 50% load (%) :
 iv) On 25% load (%) :

18. Efficiency at 75°C, 0.8 P.F. (Lag) :
 i) On 100% load (%) :
 ii) On 75% load (%) :
 iii) On 50% load (%) :
 iv) On 25% load (%) :

19. Load at which maximum efficiency occurs (% of full load) :

20. Maximum efficiency (%) :

21. a) Percentage reactance at rated current and Frequency

 HV to MV, HV to tertiary, MV to tertiary

 b) Percentage resistance at 75°C in ohm
 : HV MV tertiary

 c) Percentage impedance at rated current and Frequency at 75°C

 HV to MV, HV to tertiary, MV to tertiary
i) Positive sequence :

ii) Zero sequence :

c) Range of variation (+,-) offered in terms of clause 1.16 :

d) Tolerance applicable if any :

22. Impedance voltage drop at normal ratio at 75 °C: expressed as a percentage of normal voltage on full load (%)

23. Regulation on full load at unity P.F. at 75 °C : expressed as a percentage of normal voltage (%)

24. Regulation on full load 0.8 P.F. lagging at 75 °C: expressed as a percentage in the winding.

25. Maximum current density & c/s area in the winding: Guaranteed As per short ckt calculation
 i) H.V. (Amp./Sq. cm.) :
 ii) Cross sectional area :
 iii) M.V. (Amp/Sq. cm) :
 iv) Cross sectional area :
 v) tertiary (Amp/Sq. cm) :
 vi) Cross sectional area :

25.1 Short time thermal rating :

26. Maximum flux density in the core :

26.a Core details :
 i) Material of core lamination
 ii) Thickness of core plates (mm)
 iii) Insulation of core lamination
 iv) Insulation of core clamping plates
 v) Press board material & thickness
 vi) Prime quality grade

27. Core Material & grade

28. Core joints (butt or inter leave) :

29. Type of winding :

Sign and Seal of Bidder
i) H.V. :

ii) M.V. :

iii) Tertiary :

29. Type of axial support :

H.V. Winding :
M.V. Winding :
Tertiary winding :

30. Type of radial supports :

H.V. Winding :
M.V. Winding :
Tertiary winding :

31. Insulation of higher voltage winding :

32. Insulation of lower voltage winding :

33. Insulation of tertiary winding :

34. Thickness of transformer tank plates :

i) Sides (mm) :

ii) Bottom (mm) :

iii) Cover (mm) :

iv) Radiator (mm) :

34. Test Voltage :

i) Test voltage for 1 min. P.F. withstand test on: HV MV tertiary

ii) IMPULSE withstand voltages : HV MV tertiary

iii) Switching surge withstand voltages :

34A Partial Discharge level at 364 kV rms between phase & ground in pC.
34B RIV at 255 kV rms
 between phase & ground

34C Noise level when energized at normal voltage
 & freq at no load

35. Inter-turn Insulation
 i) High voltage side
 ii) MV side
 iii) Tertiary side
 iv) Between HV & MV
 v) Between MV & tertiary
 vi) Between HV & tertiary (as applicable)
 vii) Between core & tertiary side
 viii) Between laminations
 ix) tapping connections

36. Type of winding temperature indicator

37. Maxi continuous ratings
 i) At 50 °C ambient air temp. at site (KVA)
 ii) At 40 °C ambient air temp. at site (KVA)
 iii) At 30 °C ambient air temp. at site (KVA)
 iv) At 20 °C ambient air temp. at site (KVA)

38. Details of Air cell
 Make
 Type
 Capacity
 Size

39. Width of track gauge (Meters)

40. Bushing Particulars
 : HV MV Tertiary
 i) Type & creepage distance in mm.

ii) Rated current :
iii) Rated voltages :
iv) Momentary PF discharge voltage :
v) Visible PF discharge voltage :
vi) One min dry & wet PF voltages :
vii) Under oil flashover or puncture withstand PF & Impulse voltage :
viii) Full wave Impulse withstand voltage :
ix) Recommended gap setting :
x) Weight in kg.

41. Clearance :

a) Minimum clearance between phase (Mtrs.) :
 i) In oil :
 ii) Out of oil :

b) Minimum clearance of high voltage to earth :
in oil (Mtrs)

b) Minimum clearance of high voltage to tank :
in oil (Mtrs)

d) Phase to phase & phase to earth in air of live parts: at the top of bushings:
 HV MV Tertiary

42. a) Net weight of the core (Kgs.) :
b) Net Core area (sqcm) :

43. Net weight of copper (Kgs.) :
 a) H.V. (Kgs.) :
 b) M.V. (Kgs.) :
 c) Tertiary (Kgs.)
 d) Total (Kgs.) :

44. Weight of core and windings :
45. Weight of fittings :

46. Net untanking weight (Kgs.) :

47. Weight of tank and cover (Kgs.) :

47.1 Tank
 Dimensions :
 Material :
 Type :
 Thickness of side, bottom, cover :
 Thickness of radiator :

47.2 Guarantee against leakage for 3 years :

48. Weight of oil in transformer including bushings, conservator and cooling system (Kgs.)/Quantity (Ltrs.)

49. Weight of oil in transformer (including bushings) (Kgs):

50. Weight of complete transformer with oil and all fittings (Kgs.)

51. Weight of transformer with all fittings but without oil (Kgs.)

52. Weight of the package to be transported and dimensions

53. Dimensions of the transformers :
 i) Maximum height up to top of bushings (Mtrs.):
 ii) Overall length (Mtrs.) :
 iii) Overall width (Mtrs.) :

54. Minimum clear height for lifting core and windings: from tank in meters

55. Details of on load tap changing gear :
a) Make :

b) Type :

c) Rating :
 i) Rated Voltage :
 ii) Rated current :
 iii) Step Voltage :
 iv) STC rating :

d) Time for complete tap change (Sec.) :

e) Diverter selector switch transition time (Cycles):

f) Control :

g) Auxiliary supply details :

h) Voltage control /drive motor :

i) Protection devices :

j) Value of Maxi. Short circuit current :

k) Maxi. Impulse withstand test voltage value with:
 1.2/50 microsecond full wave between switch and ground

l) Maxi. Impulse withstand test voltage value with:
 1.2/50 micro sec. Full wave between the remote terminal and ground with the selector terminal at one end of the range

m) Maxi. Power frequency test voltage between:
 switch assembly and range

n) Maxi. Impulse withstand test voltage with :
 1.2/50 micro sec. across the tapping range
o) Maxi. Temp. of the tap changer which must not:
 be exceeded during operation

p) Approximate overall weight (kg) :

q) Approximate overall dimensions (Mtrs) :

r) Approximate overall quantity of oil (Kgs.) :

s) Compatible to SCADA remote operation :

t) Line drop compositor provided :

u) Protective devices, details :

v) No. of operations (approx.) after which the:
 change of oil is necessary

w) Time to complete one tap change :

56. Any other particulars which need a mention :

57 Cooling calculation shall be submitted :

58. Design value of surges transferred on tertiary terminals:
 1) For 1300 kVp, 1.2/50 µs surge striking on HV
 terminal and with
 a) both the tertiary terminals open :
 b) one terminal earthed :

59. Design value of surges transferred on tertiary terminals:
 1) For 900 kVp, 1.2/50 µs surge striking on MV
 terminal and with
 a) both the tertiary terminals open :
 b) one terminal earthed :

60. Fiber Optic System :
 a. Make :
 b. Address of FO system supplier :
 c. Nos. of channels :
 d. Sensors per channel :
 e. Channel switching frequency :
 f. Sampling sensor rate :
 g. Switching reliability :
 h. Wave length operational length :
 i. PC output interface :
 j. Data display :
 k. Self Diagnostic :
 l. Temp range & resolution :
 m. Accuracy :
n. Response time
o. Front panel display
p. Probe signal strength readout
q. Input power
r. Serial Output
s. Fiber type
t. Nos. of relays
u. Temperature Data storage
v. LED alarm indicators
w. System fault relay
x. System fault status indicator
y. Surge protection
z. Connectors
aa. Operating temperature range
bb. Storage temperature
cc. Probes material & dimensions
dd. Analog output
e. SCADA compatibility
ff. Nos. of probes
gg. Tank wall adaptor plate with cover
hh. EMI/RMI susceptibility
ii. Signal conditioner compatibility
jj. Connector for tank wall feed through
SCHEDULE OF GUARANTEED TECHNICAL PARTICULARS

OIL LOAD TAPCHANGING GEAR

(To be filled by the Bidder)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Make</td>
</tr>
<tr>
<td>ii</td>
<td>Type designation</td>
</tr>
</tbody>
</table>
|iii| Suitable for auto/manual operation
YES / NO |
|iv| Rated voltage (KV) |
|v| Rated current (Amps) |
|vi| Step voltage (Volts) |
|vii| Number of steps |
|viii| Rated voltage of drive motor (V) |
.ix| List of routine tests to be carried out |
|x| Location of the taps with respect to the terminals of the tapped winding |
|xi| Drawing or pamphlet-number of the technical and descriptive particulars of the OLTC, enclosed with the Bid. |

Signature of Bidder

Date :-
Sr. No. Item

xii) Drawing number of the complete control schematic drawing enclosed with the Bid, along with a write-up of the scheme provided. YES / NO

xiii) Separate conservator and oil surge relay provided (YES / NO)

xiv) Local outdoor cabinet general arrangement drawing number (enclosed with the Bid).

xv) Remote indoor control cabinet general arrangement drawing number (enclosed with the Bid.)

xvi) Quantity of oil in the OLTC chamber (Ltrs)

xvii) Capacity of OLTC conservator tank in Cu.mtr.

Date :-

Signature of Bidder
SCHEDULE OF GUARANTEED TECHNICAL PARTICULARS

CONTROL CABINET
(To be filled by the Bidder)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Item</th>
<th>MK box</th>
<th>Cooler control</th>
<th>RTCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manufacturer's name and Country</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>Indoor/ outdoor application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td>Design ambient air temperature (C^0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td>Thickness of sheet steel for outdoor & indoor panels (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5)</td>
<td>Degree of protection provided (as per IS : 13947 or equivalent)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6)</td>
<td>Bill of material for various equipment giving make, type, ratings etc. enclosed (YES /NO)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7)</td>
<td>Colour of finish paint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(i) Outside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ii) Inside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8)</td>
<td>Temperature rise at rated current over specified ambient temp of 50^0C (C^0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Continuous current rating (Amp)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Three second current rating (KA) (short time)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9)</td>
<td>Control wiring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Material of conductor for various circuits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Size of conductor For various circuits mm2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Conductor – Solid / Stranded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10)</td>
<td>Terminal Blocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i) Make</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii) Current rating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Power terminals (Amp)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Other terminals (Amp)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11) All tests as specified in Section-D (ii)
DATA SHEET A1 Specification for the control panel will be carried out
Yes / No.

12) Space heater rating (Watts)

Signature of Bidder
Date :-
SCHEDULE OF GUARANTEED TECHNICAL PARTICULARS

CLAMPS & CONNECTORS

(To be filled by the Bidder)

<table>
<thead>
<tr>
<th>SR. ITEM NO.</th>
<th>ITEM</th>
<th>HV</th>
<th>MV</th>
<th>tertiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>BIDDER's name and address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Manufacturer's name and address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applicable standards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>For connection to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Conductor size and arrangement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Equipment terminal size and arrangement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Clamp body</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Bolts and nuts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Spring washers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Liners if any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Rated current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Maximum temperature rise over Reference ambient temperature (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(specified in project information when carrying rated current)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>Rated terminal load (Kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Factor of Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>Minimum thickness of any part (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td>Weight of connector complete with Hardware (Kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Matching accuracy for matching surfaces maintained or not</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Service – Indoor / Outdoor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Manufacturer's drawing no.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Type Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a. Whether type tests already carried out (YES / NO)
b. If yes, test certificates enclosed (YES / NO)
c. Details of type tests to be carried out

5. List of routine tests to be carried out by the BIDDER

6. Description of testing facilities for carrying out
 a. Mechanical test
 b. Heat run test
 c. Material composition test
 d. Test for checking blow holes, cracks etc.

7. For the above mentioned testing facilities, please indicate name and address

 Signature of Bidder
 Date:
SECTION – III
SCHEDULE – “C”

The equipment offered confirm to other standard than specify standard. The salient points are as under.

<table>
<thead>
<tr>
<th>SR.NO.</th>
<th>NAME OF STANDARD</th>
<th>ADDITIONAL/SALIENT FEATURES DIFF. FROM IS 2026</th>
</tr>
</thead>
</table>

APPENDIX – ‘A’

SPECIFICATION OF TRANSFORMER OIL

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Characteristics of Transformer Oil</th>
<th>Requirement</th>
<th>Method of test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Appearance</td>
<td>The oil shall be clear transparent & free from suspended matter of sediments.</td>
<td>A representative sample of the oil shall be examined in a 100 mm thick layer, at ambient temperature.</td>
</tr>
<tr>
<td>2</td>
<td>Density, Max.</td>
<td>0.89 gm/Cm³ at 29.5 °C</td>
<td>IS: 1448</td>
</tr>
<tr>
<td>3</td>
<td>Dynamitic Viscosity CST at 27 °C</td>
<td>27 cSt (Max.)</td>
<td>IS: 1448</td>
</tr>
<tr>
<td>4</td>
<td>Flash point penskey-Marten (Closed)</td>
<td>140 °C Min.</td>
<td>IS: 1448</td>
</tr>
<tr>
<td>5</td>
<td>Interfacial tension at 27 °C Newton/M</td>
<td>0.04 Min.</td>
<td>IS: 6104</td>
</tr>
<tr>
<td>6</td>
<td>Pour point</td>
<td>-15 °C (Max.)</td>
<td>IS: 1448</td>
</tr>
<tr>
<td>7</td>
<td>Neutralization value</td>
<td>0.03 mg KOH/gm Max. 0.03 mg KOH/gm Max. Nil</td>
<td>IS: 335 Appendix-A</td>
</tr>
<tr>
<td>8</td>
<td>Corrosive Sulphur (In terms of classification of copper strips) 48 Hrs. @ 150 °C</td>
<td>Non corrosive</td>
<td>ASTM D1275 subjecting oil 150°C for 48 hrs.</td>
</tr>
<tr>
<td>9</td>
<td>Electric Strength (Break down voltage)</td>
<td>30 KV Min. (rms) 60 KV Min. (rms)</td>
<td>IS: 6792</td>
</tr>
<tr>
<td>10</td>
<td>Dielectric Dissipation Factor (Tan delta) at 90 °C</td>
<td>0.002 Max.</td>
<td>IS: 6262</td>
</tr>
<tr>
<td>11</td>
<td>Specific Resistance (Resistively)</td>
<td>35 x10¹² Ohm-cm (Min.) 1500 x10¹² Ohm-cm (Min.)</td>
<td>IS: 6103</td>
</tr>
<tr>
<td>12</td>
<td>Oxidation Stability</td>
<td>0.40 mg/ KOHp gm Max. 0.10% by weight max.</td>
<td>IEC 61125 (method C)</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Characteristics of Transformer Oil</td>
<td>Requirement</td>
<td>Method of test</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 13 | Ageing Characteristics after 96 Hrs accelerated ageing (Open beaker method with copper catalyst) | a) Specific Resistance (Resistivity)
1) @ 27 °C
2) @ 90 °C
b) Dielectric Dissipation Factor (Tan delta) @ 90 °C
c) Total acidity
d) Total sludge value | 2.5 X 10^{12} Ohm-cm-Min.
0.2 X 10^{12} Ohm-cm min.
0.2 Max.
0.05 mg. KOH/gm Max.
0.05 % by weight Max. | ASTM-/D 1934/IS: 12177 |
| 14 | Presence of Oxidation inhibition | Absent | IS: 335 Appendix: D |
| 15 | Water content PPM (Max) | New untreated oil
After treatment | 50 PPM Max.
05 PPM Max. | IS: 2362 IS: 1866 |
| 16 | Poly Chlorinated Biphenyls (PCB) Content | NIL | IEC 61619 Doble spec |
| 17 | Gassing tendency at 50 hZ, after 120 minutes | 5 mm³ per minute (Max.) | Doble spec |
APPENDIX – B

1.0 QUALIFICATION REQUIREMENTS FOR ERECTION, TESTING & COMMISSIONING

1.1 The bidder should have carried out erection, testing, commissioning of and test charging of at least two nos. of 220 kV or above class transformers at 220 kV &/or 400 kV switch yard of substations satisfactory during last five years before date of submission of the bid.

1.2 The bidder should arrange requisite tools and tackles including adequate capacity hydraulic crane having suitable adjustable boom length for erection of bushing, radiators, conservator, and other associated costly equipments.

1.3 The bidder should have team of trained personnel and skilled labour force and supervising engineers to carry out erection, commissioning, testing and test charging work including laying of control cables and wiring of OLTC gear scheme and inter connection of RTCC panel with D.M., of OLTC., wiring of cooler control scheme and cooling fans including automatic operation of cooler control etc.

2.0 ERECTION OF TRANSFORMER

2.1 Erection includes entire vacuum by proper capacity of vacuum pump, for not less than 48 hours, or more if required as per the instruction of engineer in charge.

2.2 Oil may be supplied in tanker/steel drums, which should be properly sealed during transportation and storage. Seal shall be verified and opened by GETCO representative before filling in transformer. Contractor should have enough storage capacity for handling oil. Filling the oil from tank/drums to the transformer shall be through 5000 ltrs. or more capacity high quality filter machine and filtration of the same shall be carried out to get desired BDV & PPM as per IS/IEC/specification.

2.3 Contractor has to replace all the gaskets by new ones if required by engineer –in –charge.

2.4 Erection shall include wiring of cooling fans, RTCC panels, terminations of alarm and trip contacts from buchholz relay, WTI, OTI, PRD to M.K. box and in turn to remote relay panel and RTCC panel in control room. Required cabling on the transformer as well as from transformer to control room shall also be included in scope of work. The testing and commissioning of OLTC as well as cooler control scheme shall be carried out as per instruction of engineer in charge.

2.5 The contractor shall arrange nitrogen cylinder required at site for above work.

2.6 In case of any breakage of any item, contractor has to follow up with insurance for the claims and amount for damage /breakage will be with
held from contractor’s bill till the time claim is finalized by insurance company.

2.7 Minimum 15 Nos. of good skilled fitters, with 2 Nos. qualified supervisors and senior engineer having sufficient experience should be posted at site during the above work.

2.8 Contractor has to repaint the transformer tank with two coat of anti rusting good finish LTBS grey shade 631 of IS:5 by spray painting as per the direction of engineer in charge.

2.9 Contractor is required to carry out all minor/major fabrication work of pipes and hangers if required at site as per direction of engineer in charge.

2.10 All tools and tackles, testing equipments listed here under are to be arranged by the contractor.

2.11 Contractor shall arrange required capacity of oil tanker at site.

2.12 Any other items not mentioned above but required for successful completion of erection shall have to be arranged by the contractor.

3.0 TOOLS REQUIRED FOR ERECTION

1. One or two mobile crane hydraulic of adequate capacity with long boom of 30 ft. bearing free vertical lifts suitable for lifting HV bushing.

2. Steel/Manila/Nylon ropes and D shackle for lifting of 3-ton weight.

3. 4000 or 6000 liters./hr. capacity filter machine in excellent working condition. It must be capable of heating transformer oil up to 80°C and must be equipped with built in high vacuum pump and chamber filter elements.

4. Following accessories should also be made available.
 a) Non-collapsible hose piping of size 40 mm to 80 mm with nipple and flange.
 b) Hosepipe should be of oil resistant 2” to 3” BSP suitably threaded for connecting hose pipes & provided with holes for fastening.
 c) 2 Nos. storage tanks for insulating oil of adequate capacity provided with 2 bottom drain cum filter valve and another 2” top valve.
 d) Two complete sets of ring and flat spanners of metric size up to 4 to 36.
 e) One complete set of Allen keys.
 f) One complete set of screw drivers.
 g) 1/4” shackle 3-ply nylon rope of 15 mtr. Length.
 h) 4 nos. of flange each of 1”, 2” to 3” BSP suitably threaded for connecting hose pipe & provided with holes for fastening.
 i) Multi stage vacuum pumping system capacity 250-500 mm cu/hr. & should be able to create absolute vacuum of 1 torr or 1.3 m bar or less having following accessories.
 j) Non return valve at inlet.
 k) GI pipe/non-collapsible pipes with flange for connecting vacuum pump to transformer main tank.
l) Vacuum gauge for reading 0 to 50 mm along with flange for fitting at top of transformer of any suitable size 3/16" and 3/8" set in good quality.

m) Oil testing kit in good working condition having 2.5mm and 4 mm guage for adjusting the gap, 2.5/5 KV megger motor driven and capable of reading up to 50000 M-OHM.

n) 3 Ltrs. Of CTC.

o) Hot air blower for drying out of bushing.

p) Required nitrogen cylinder.

q) Stainless steel bottles for samples.

r) Gas cylinder with nozzle torch for gas cutting etc.

s) Any other item required for successful completion of work.
ANNEXURE - I

AUTOMATIC VOLTAGE REGULATING RELAY

1. Automatic voltage control shall be initiated by a voltage regulating relay of an approved make and suitable for flush and/or wall mounting / DIN-rail mounting.
2. The relay shall operate from the nominal reference voltage derived from a circuit mounted 1 phase / 3 phase Voltage transformer (VT).
3. The AVR relay shall be Microprocessor based Numerical relay having large LCD display 128x128.
4. The relay shall have 4 selectable set point voltages.
5. The AVR relay shall have the following methods as option for the compensation of voltage.
 - Apparent Current (Z-Comp.)
 - Line drop compensation (LDC)
 - Active Current
 - Reactive current
6. The relay bandwidth shall be adjustable between –5 to +15 of set point voltage.
7. The relay shall have following options regarding time behavior with Time factor selectable from 0.1 to 30.
 - Linear
 - Integral
 - Fast integral
8. The relay shall incorporate an under voltage / over voltage blocking facility which shall make the control inoperative if voltage falls / rises by percentage value of set point value (as mentioned in Guaranteed technical particulars) with automatic restoration of control when nominal voltage rises / falls to value as mentioned in the Guaranteed technical particulars.
9. The AVR relay shall have integrated features for the display of following parameters
 - Integrated tap changer position display
 - Nominal Voltage
 - Load current
 - Bandwidth
 - Measuring values V. I. Active power, Reactive power, Apparent power, phase angle, Power factor, Reactive current and frequency
10. The AVR relay shall have facility to compensate the VT and CT-errors.
11. The AVR relay shall have facility to register the tap changer statistics. In the statistics mode, the relay shall display the no. of tap changing operations occurred on each tap.
12. The AVR relay shall have facility to recode the voltage and current with respect to time. Each of voltage value shall be measured for 100ms and averaged for 1 second. The recorded values shall be presented in graphical format on the device.
13. The AVR relay shall have integrated feature to make the parallel operation of 10 transformers working in parallel. The relay shall be self sufficient and shall not require any additional devices like parallel balancing module etc. The following principal shall be available in the relay as standard.
 - Master Follower
 - Master Slave
 - ΔI SinΦ (Circulating current)
14. The AVR relay shall have facility to monitor or control the following parameters

- Monitoring of lifetime consumption of transformer
- Monitoring of operating hours of Tap changer, Fans and Pump
- Control of cooling levels of transformer
- Recording of Hot spot temperature

15. The AVR relay shall have facility to record specific events (Event-Recorder) like under voltage, over voltage, Over current, Auto/Manual, local/remote etc. with date and time stamping.

16. The AVR relay shall have facility to make selection of Auto/Manual and Local/Remote.

17. The AVR relay shall have different LEDs to indicate Service and Blocked condition.

18. It is preferred that 12 nos of freely programmable LEDs shall be available to indicate different Operations / Alarm / Faults condition.

19. The AVR relay shall have freely programmable Binary Inputs, Binary outputs, Analog Inputs and Analog Outputs.

20. The AVR relay shall have software to make the parameter settings of the device and it shall also be possible to do the parameter setting through keyboard of relay.

21. The AVR relay shall have suitable interface to make communication with higher level SCADA system. The following ports a minimum shall be available on the device.

 a. Rs 232 port (COM 1) for doing the parameter setting and local communication with device.
 b. RS 232 port (COM 2) for communication with higher level SCADA with optional protocols like MODBUS, SPABUS, PROFIBUS DP, LON, IEC 60870-5-101, -103 and –104, IEC 61850 in preparation.

22. It shall be possible to communicate via bus with all similar devices located at different location by making communication link with any one device through its RS 485- port (E-LAN) meant for local communication.

23. It shall have facility by which a customer specific software programme can be written and incorporated as feature in the relay.
ANNEXURE C

List of documents attached with technical bid:

Bidder shall invariably attach the following documents and clearly marked and duly flagged in technical bid. In absence of these documents offer will be evaluated as a non submission.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Particulars of document</th>
<th>Whether attached with tech bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drawings in AutoCAD format</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Drawings hard copies as indicated in specification</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Manual in PDF format</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>QAP for manufacturing process in SOFT format</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>QAP for manufacturing process in Hard format</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FQP in SOFT format</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>FQP in Hard copy</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Type test Reports in hard copies</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>for transformer</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>for OLTC</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>for control cabinet</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>for clamps & connectors</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>for Air cell</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Confirmation regarding type tests as per clause no. Cl.1.30.3.2 page no. 35 – “IMPORTANT NOTE”</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Calculation of Thermal stability to withstand short circuits</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Calculation of Dynamic ability to withstand short circuits</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cooling calculation</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Guaranteed Technical Particulars, completely filled in</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>for transformer</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>for OLTC</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>for control cabinet</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>for clamps & connectors</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>for Air cell</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>for NIFS</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Any other essential documents</td>
<td></td>
</tr>
</tbody>
</table>

SIGNATURE OF BIDDER COMPANY’S ROUND SEAL

DATE:

PLACE:
Annexure - II

Technical Specification For On Line Moisture and Gas In Oil Analyser For New Transformer With Model Analysis Software And Remote Data Transfer/Communications through internet:

1.0 GENERAL:

The transformer shall be equipped with on line moisture and gas in oil analyzer system, ‘HYDRAN – M2’ or equivalent with model analysis software and remote data transfer / communications. It is intended to continuously monitor the evolution of dissolved gases from the oil of transformer with the help of a gas in oil sensor with no moving parts or pump to detect and continuously monitor a composite value of gases like H2 (Hydrogen), CO (Carbon monoxide), C2H2 (Acetylene), C2H4 (Ethylene), etc. The system shall be installed on a single, open bore ball or gate valve. The system shall also continuously monitor the moisture content in the transformer oil to result a comprehensive incipient fault monitoring system.

Based on the type and configuration of the transformer and with 4, 4-20mA input channels and appropriate non intrusive sensors, the system shall be capable of utilizing the measured parameters of temperature, cooling bank status and load currents to derive the following model calculations (based on IEEE and/or IEC Standards). The original factory test report for the transformer will be made available to properly configure these model calculations.

- Apparent Power
- Load Current
- PPM value of composite combustible gas measurement
- Short term and long term rate of change of PPM value of composite combustible gas measurement
- PPM water content in oil
- Water in oil condensation temperature
- Winding hotspot temperature
- Moisture content in winding insulating paper
- Moisture content in barrier insulation
- Relative ageing of the transformer insulation system taking into account winding hotspot temperature and moisture content in winding insulating paper.
- Bubble inception temperature
- Cooling system status
- OLTC Tap position tracking (when equipped with OLTC)
- OLTC temperature differential modeling (when equipped with external type OLTC)

2.0 SCOPE of WORK:

This is as a part of transformer supply, the transformer manufacturer shall also include in the scope of this tender, to supply, provision, mounting, erection, commissioning, etc; but not limited to the following, for on line moisture and gas in oil analyzer system.
2.1 Microprocessor based Intelligent Electronic Device (IED), as required, to be on a single open bore ball or gate valve mounted on transformer along with all required fittings and accessories.

2.2 One set of centralized monitoring system with suitable software for communicating with IEDs simultaneously with a provision for communicating to two or more IEDs if required in future. The required software shall be loaded in GETCO system at desired location such that all the data/display associated with the system can be visualized and all archiving / trending can be achieved. Successful Bidder shall also be responsible for coordination with supplier of this on line system & SAS /GETCO system and ensure for proper interfacing with all required devices, cabling, software, hard ware, services, etc. It shall also give printouts of all required data as desired.

2.3 All required interconnection, wiring, cabling with fiber optic cables/RS485 cables etc., including all required accessories for successful operation of the system.

2.4 Required earthing & connection for the system at required location.

2.5 Necessary tools, tackles, calibration equipments, installation Material, required for successful operation of the system.

2.6 To supply installation, commissioning and O&M manuals and procedures, etc., in hard and soft form.

2.7 To supply standard HOST/User Interface Software in ENGLISH, one with each unit on a CD – ROM.

2.8 The system interface shall also include required field cable, patch cable, patch box, associated accessories & hardware’s to connect to the GETCO system.

2.9 Training to GETCO Engineers.

3.0 SPECIFIC TECHNICAL REQUIREMENT:

3.1 Intelligent Electronic Device (IED):

The IEDs shall be suitable for outdoor heavily polluted atmosphere, ambient temperature of 50°C and relative humidity of 100 % and shall have minimum degree of protection of IP-55. Necessary type test reports shall be submitted with the bid. Each IED shall be provided with additional canopy.

The IED shall be suitable for mounting on offered transformer. The best single point of mounting location to ensure optimum flow of oil in the IED without any external / additional pump & piping shall be decided in co ordination with on line moisture and gas in oil analyzer system manufacturer. The system shall operate satisfactorily for oil temperature range of -5 to 100°C with heat fin adapter and shall be suitable for oil pressure of 100 psi. Provision shall be made available for
collection oil samples for DGA and moisture analysis, without disturbing IED or its connections. It shall be possible to carry out the periodic maintenance easily. The normal functioning of IED shall be guaranteed without necessity of any additives / consumable. The IED shall include an automatic ‘self-test’ feature which shall test the sensor and system twice per month. It shall include a dedicated “Fail Alarm” relay, should the test result in detection of a problem in the sensor and/or system.

Each IED shall be provided with multi line LCD with back light or red LED display to indicate combined gas concentration level in ppm, moisture content in RH% & ppm; hourly and daily trend readings, alarm etc. Key pad shall be built in for menu driven easy operation. It shall be possible to download all information locally by a laptop computer. All the information shall also be continuously transmitted to centralized monitoring GETCO system. Necessary serial interfaces shall be provided. Minimum Four (4) nos. of potential free contacts and 4-20 mA analog output shall also be provided. The IED shall be electromagnetically screened and impervious to vibrations.

3.2 Centralised Monitoring System:

The centralised monitoring system shall be installed in GETCO server for continuous display recording and archiving of information received from all IEDs with a provision for receiving information from future IEDs also. The software shall have menu driven pass word protected real time operating system with self-diagnostic feature. The software shall be suitable for graphical display of gas evolution and moisture level with daily and hourly trending as well as historical data and event recording. It shall be required to obtain audio visual alarm with suitable multiple thresholds for dissolved gas and moisture level ‘HIGH’, “HIGH - HIGH”, ‘FAIL’. It shall also possible to configure the IEDs from the centralizing system as well as local.

3.3 Interconnecting Cabling:

Glass Fiber Optic mono mode cables /RS485 cable shall be provided for interconnection of all IEDs and the central monitoring system. The cable shall be laid in HDPE conduits. All required terminations, splicing kits shall be arranged by bidder. Provision shall be kept for installing and terminating cables from future IEDs.

It is also intent to monitor moisture and gas in oil of transformer through internet. There will not be any wire connection. It will be wireless communication. Any suitable modem shall be provided. Data is to be seen and analyze at corporate office or any other remote locations as desired by GETCO.

4.0 The on line moisture and gas in oil analyzer system shall be compatible to SCADA. It shall use DNP3.0 or Modbus protocol, without the use of third party protocol converters.
5.0 List of routine & acceptance tests shall be submitted with the technical bid. Successful bidder has to perform acceptance tests in presence of GETCO representative, as per relevant standard.

6.0 Services of on line moisture and gas in oil analyzer system supplier during supply, mounting, erection, testing, commissioning and after sales even beyond guarantee period shall have to be arranged and provided by the bidder.

7.0 The on line moisture and gas in oil analyzer system shall also be operational during temperature rise tests and demonstrated during these tests. The data shall be recorded and reported in the test report. Data obtained from on line moisture and gas in oil analyzer system and conventional DGA shall be compared however, both values should satisfy the commitment.

NOTE: The clause no. 7.0 shall be applicable only when this item is purchased as a part of transformer.

8.0 The bidder shall furnish all guaranteed technical particulars as called for in this specification. Bid not containing this information are likely to be rejected.

9.0 Deviation from Specification:

All deviations from this specification shall be separately listed in specified Schedule, in the absence of which, it will be presumed that the provision of the specification are complied with by the bidder.
ANNEXURE - III

GUJARAT ENERGY TRANSMISSION CORPORATION LTD.

TECHNICAL SPECIFICATIONS FOR THE WORK OF DESIGN, SUPPLY, ERECTION AND COMMISSIONING INCLUDING CIVIL WORK OF NITROGEN INJECTION SYSTEM FOR PROTECTION AGAINST THE FIRE & EXPLOSION FOR TRANSFORMER.

TECHNICAL SPECIFICATIONS

Name of work: Turnkey contract for the work of design, supply, erection and commissioning of Nitrogen Injection system for protection against the transformer explosion for 400 KV Transformers and Shunt Reactors as indicated in Schedule - A.

Each oil filled transformer / reactor shall be provided with a dedicated Nitrogen Injection system for prevention against the transformer explosion which shall use nitrogen as quenching medium. The system shall prevent transformer / Reactor oil tank explosion and possible fire in case of internal / external cause. In the event of fire by external causes such as bushing fire, OLTC fires, fire from surrounding equipment etc., it shall act as a fast and effective fire fighter. It shall accomplish its role as fire preventer and extinguisher without employing water or carbon dioxide. Fire shall be extinguished within reasonable with time (not more than 3 minutes so as not to harm the transformer) of system activation and within 30 seconds (maximum) of commencement of nitrogen injection. The system shall have been in successful operation / commissioned in Indian / Abroad installations for at least last five years for protection of transformers of 220 KV and higher voltage class. The list of past supplies in India / Abroad along with performance certificate from users of the system shall be submitted for approval of purchaser.

Activation of the system

Mal-functioning of the Nitrogen injection system could lead to interruption in power supply. The supplier shall ensure that the probabilities of chances of malfunctioning of the Nitrogen injection system are practically zero. To achieve this objective, the supplier shall plan out scheme of activating signals which should not be too complicated to make the system inoperative in case of actual need. The system shall be provided with automatic controls to prevent the explosion of transformers. Besides automatic control, remote electrical push button control at Control box and local manual control in the cubicle shall also be provided. The following electrical-signals shall be used for activating the system under prevention mode/fire extinguishing mode.

Auto Mode

For prevention:

- Differential relay operation.
- Buchholz relay paralleled with pressure relief valve or RPRR (Rapid Pressure Rise Relay)
• Tripping of all circuit breakers (on HV & LV/IV side) associated transformer / reactor is the pre-requisite for activation of system.

For extinguishing

• Fire Detector
• Buchholz relay paralleled with pressure relief valve or RPRR (Rapid Pressure Rise Relay).

Tripping of all circuit breakers (on HV & LV/IV side) associated with transformer / reactor is the pre-requisite for activation of system.

Manual Mode (Local / Remote)

Tripping of all circuit breakers (on HV & LV / IV side) associated with transformer / reactor is the pre-requisite for activation of system.

Manual Mode (Mechanical)

• Tripping of all circuit breakers (on HV & LV / IV side) associated with transformer / reactor is the pre-requisite for activation of system.

The system shall be designed to be operated manually in case of failure of power supply to the system.

General description

Nitrogen Injection system should be a dedicated system for each oil filled transformer / reactor. It should have a Fire Extinguishing Cubicle (FEC) placed on a plinth at a distance of 5-10 m away from transformer / reactor or placed next to the firewall (if fire fighting wall exists). The FEC shall be connected to the top of transformer / reactor oil tank for depressurization of tank and to the oil pit (capacity is approximately equal to 10% of total volume of oil in transformer / reactor tank / or existing oil pit) from its bottom through oil pipes. The FEC should house a pressurized nitrogen cylinder (s) which is connected to the oil tank of transformer / reactor oil tank at bottom. The Transformer Conservator Isolation Valve (TCIV) is fitted between the conservator tank and Buchholz relay. Cable connections are to be provided from signal box to the control box in the control room, from control box to FEC and from TCIV to signal box. Detectors placed on the top of transformer / reactor tank are to be connected in parallel to the signal box by Fire survival cables. Control box is also to be connected to relay panel in control room for receiving system activation signals.
Operation

On receipt of all activating signals, the system shall drain - pre-determined volume of hot oil from the top of tank (i.e. top oil layer), through outlet valve, to reduce tank pressure by removing top oil and simultaneously injecting nitrogen gas at high pressure for stirring the oil at pre-fixed rate and thus bringing the temperature of top oil layer down. Transformer conservator isolation valve blocks the flow of oil from conservator tank in case of tank rupture / explosion or bushing bursting. Nitrogen occupies the space created by oil drained out and acts as an insulating layer over oil in the tank and thus preventing aggravation of fire.

System components

Nitrogen Injection system shall broadly consist of the following components. However, all other components which are necessary for fast reliable and effective working of the system shall deemed to be included in the scope of supply.

CUBICLE (FEC)

The Cubicle Frame shall be made of CRCA sheet of 3 mm (minimum) thick complete with the base frame, painted inside and outside with post office red colour (shade 538 of IS -5). It shall have hugged / hinged split doors fitted with high quality tamper proof lock. The doors, removable covers and panels shall be gasketted all round with neoprene gaskets. The degree of protection shall be IP55. The following items shall be provided in the Cubicle.

- Nitrogen gas cylinder with regulator and falling pressure electrical contact manometer.
- Oil drain pipe with mechanical quick drain valve.
- Electro mechanical control equipment for draining of oil of pre-determined volume and injecting regulated volume of nitrogen gas.
- Pressure monitoring switch for back-up protection for nitrogen release.
- Limit switches for monitoring of the system.
- Butterfly valve with flanges on the top of panel for connecting oil drain pipe and nitrogen injection pipes for transformer / reactors.
- Panel lighting (CFL Type)
- Oil drain pipe extension of suitable sizes for connecting pipes to oil pit.
- Space heater.
Control box

Control box is to be placed in the control room for monitoring system operation, automatic control and remote operation. The following alarms, indications, switches, push buttons, audio signal etc. shall be provided.

- System Oil.
- TCIV open.
- Oil drain valve closed.
- Gas inlet valve closed
- TCIV closed
- Detector trip
- Buchholz relay trip
- Oil drain valve open
- Extinction in progress
- Cylinder pressure low
- Differential relay trip
- PRV / RPRR trip
- Transformer / reactor trip
- System out of service
- Fault in cable connecting fault detector
- Fault in cable connecting differential relay
- Fault in cable connecting Buchholz relay
- Fault in cable connecting PRV / RPRR
- Fault in cable connecting transformer reactor trip
- Fault in cable connecting TCIV
- Auto / Manual / Off
- Extinction release on / off
- Lamp test
- Visual / Audio alarm for AC supply fail
- Visual / Audio alarm for DC supply fail

As far as possible the control box should be such devised that all the transformers and reactors or group thereof should be controlled from single spot.

Transformer Conservator Isolation Valve.

Transformer conservator isolation valve (TCIV) to be fitted in the conservator pipe line, between conservator and buchholz relay which shall operate for isolating the conservator during abnormal flow of oil due to rupture / explosion of tank or bursting of bushing. The valve shall not isolate conservator during normal flow of oil during filtration or filling or refilling, locking plates to be
provided with handle for pad locking. It shall have proximity switch for remote alarm, indication with visual position indicator.

The TCIV should be of the best quality as malfunctioning of TCIV could lead to serious consequence. The closing of TCIV means stoppage of breathing of transformer / reactor.

Locking plates shall be provided for pad locking.

Detectors

The system shall be complete with adequate number of detectors (quartz bulb) fitted on the top cover of the transformer / reactor oil tank.

Signal box

It shall be mounted away from transformer / reactor main tank, preferably near the transformer marshalling box, for terminating cable connections from TCIV & detectors and for further connection to be control box. The degree of protection shall be IP55.

Cables

Fire survival cables (capable to withstand 750º C.) of 4 core x 1.5 sq. mm size for connection of detectors in parallel shall be used. The fire survival cable shall conform to BS 7629-1, BS 8434-1, BS 7629-1 and BS 5839-1, BS EN 50267-2-1 or relevant Indian standards.

Fire Retardant Low Smoke (FRLS) cable of adequate size shall be used for connection of signal box / marshalling box near transformer / reactor and FEC mounted near transformer/ reactor with control box mounted in control room.

Fire Retardant Low Smoke (FRLS) cable of 4 core x 1.5 sq. mm size shall be used for connection between control box to DC & AC supply source, FEC to AC supply source, signal box / marshalling box to transformer conservator isolation valve connection on transformer / reactor. Separate cables for AC supply & DC supply shall be used.

Pipes

Pipes complete with connections, flanges, bends and tees etc. shall be supplied along with the system.
Other items to be supplied.

(a) Oil drain and nitrogen injection openings with gate valves on transformer / reactor tank at suitable locations.

(b) Flanges between Buchholz relay and conservator tank for fixing TCIV.

(c) Detector brackets on transformer / reactor tank top cover.

(d) Spare potential free contacts activating the system i.e. in differential relay, Bucholz relay. Pressure Relief Device / RPRR, Circuit breaker of transformer / reactor.

(e) Pipe connections between transformer / reactor and FEC and between FEC and oil pit required for collecting top oil.

(f) Cabling for detectors mounted on transformer / reactor top cover.

(g) Inter cabling between signal box, control box and FEC.

(h) Butterfly valves / Gate valves on oil drain pipe and nitrogen injection pipe which should be able to withstand full vacuum.

(i) Supports, signal box etc. which are to be painted with enameled paint.

(j) Any other item required for satisfactory operation of system.

Power supply

For Control Box 220 V / 110 V DC

For FEC Auxiliary 230 V AC

Spares for three (3) years Operation & Maintenance

The bidder apart from the below mentioned spares shall submit a list of recommendation spares for three years trouble free operation of the equipments and also furnish unit rates. The owners will scrutinize the said list and decide on the items on spares to be ordered and the quantities. These spares shall be supplied by the contractor before end of guarantee period. The owner reserves right to order the spares with twelve (12) months from the date of order for
main equipments and the rate shall be kept valid till this date. The prices of these spares shall not be considered for evaluation of the bid.

Mandatory Spares

Cylinder filled with Nitrogen of required 1 No. Capacity per substation.

Detectors per transformer 3 No.

Regulator assembly per sub-station 1 No.

Modification on the transformer

No modification on the transformer shall be allowed which affects its performance (i.e. efficiency, losses, heat dissipation ability etc.) safety, life etc. or it’s any other useful parameter. This requirement shall be paramount importance and shall form the essence of the contract.

However, in any case, performance of transformer should not be affected in any manner by having Nitrogen Injection Fire Prevention Cum Extinguishing System (NIFPES) and the Contractor / Sub-Contractor shall give an undertaking to this effect. All pipes should be washed / rinsed with transformer oil. If any damage is done to the transformer and / or any connected equipment during installation & commissioning full recovery therefore shall be effected from the Contractor / Sub-Contractor, of NIFPES system.

It shall be solely the responsibility of Contractor / Sub-Contractor to install, carry out pre-commissioning tests & commission NIFPES at the mentioned Sub-Station in this specification, to the entire satisfaction of the GETCO.

Interlocks

It shall be ensured that once the NIFPES gets activated manually or in auto mode, all the connected breakers shall not close until the system is actually put in OFF mode. Also PRV shall get closed only if all the connected breakers are open.
Tests

Contractor has to carry out the type test as per relevant IS/IEC. Specifically IP 55 on FEC or have to produce the report from NABL approved Lab. Reports of all routine test conducted as per relevant IS/IEC standards in respect of various bought out items including test reports for degree of protection for FEC / control box / signal box shall be submitted by the supplier.

The supplier shall demonstrate all the functional test associated with the following as Factory Acceptance Tests:

- FEC, Control Box
- Fire Detector
- Transformer Conservator Isolation Valve

The performance test of the complete system shall be carried out after erection of the system with transformer at site.

Detailed layout drawings, equipment drawing along with 4 sets of Operation and Maintenance manual along with soft copies (In CDs) shall be submitted by the supplier along with the consignment.

The guaranteed and other technical particulars for the offered system are indicated in Section - "Guaranteed and Other Technical Particulars". Any other particulars considered necessary in addition to those listed in that Section may be furnished by the Bidder.
GUARANTEED TECHNICAL PARTICULARS
NITROGEN INJECTION SYSTEM FOR PREVENTION OF FIRE/EXPLOSION FOR TRANSFORMERS/REACTORS.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Description</th>
<th>Guaranteed Particulars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Name of Manufacture and country of origin</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Reference standards</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Details of system equipments</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FEC (Fire Extinguishing Cubicle)</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Dimensions (LXBXH) mm</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Capacity of Nitrogen cylinder</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Number of cylinders</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Pressure of Nitrogen filing</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Minimum distance of FE cubicle from the transformer</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Method of mounting</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Whether the following items are provided in FE cubicle. If so furnish make, type & other details</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Contact Manometer</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Pressure Regulator</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Oil Release Unit</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Gas release unit</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Oil drain assembly</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Pressure / limit switches</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>No. of contacts & spare contacts (NO & NC)</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>Oil drain Valve (ABOVE FEC)</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Make</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>Type of metal</td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>Nitrogen Injection Valve (Above FEC)</td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>Make</td>
<td></td>
</tr>
<tr>
<td>4.23</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>4.24</td>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>Oil drain pipe</td>
<td></td>
</tr>
<tr>
<td>4.26</td>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>4.27</td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>4.28</td>
<td>Number of openings in the transformer tank</td>
<td></td>
</tr>
<tr>
<td>4.29</td>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Control Box</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Dimensions (LXBXH) mm</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Type & Thickness of sheet steel</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Details of components provided in the control box</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Control voltage</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Method of mounting</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Whether audio and visual alarm provided?</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Transformer Conservator Isolation Valve</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Make</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Whether suitable for pipe of size 80 mm dia</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>No. of contacts & spare contacts (NO & NC)</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>Padlocking provision</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Detectors</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Make</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Quantity required</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Method of fixing</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Effective heat sensing area</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>Temperature recommended for effective heat sensing</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>Number of contacts NO / NC</td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>Necessity and condition of Refilling</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Whether approved by Tariff Advisory Committee of India</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TECHNICAL PARTICULARS FOR NITROGEN INJECTION SYSTEM FOR PREVENTION OF TRANSFORMER EXPLOSION</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Power Supply</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Control box</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>FEC (lighting)</td>
<td></td>
</tr>
<tr>
<td>10.3</td>
<td>Extinction period</td>
<td></td>
</tr>
<tr>
<td>10.4</td>
<td>On system activation</td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td>On commencement of Nitrogen injection</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>FEC Suitable for capacity</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Dimensions (LXBXH) mm</td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>11.3</td>
<td>Nitrogen cylinder capacity</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Control Box</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Dimensions (LXBXH) mm</td>
<td></td>
</tr>
<tr>
<td>12.2</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Detectors</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Heat sensing temperature</td>
<td></td>
</tr>
</tbody>
</table>
13.2 Time of Operation

<table>
<thead>
<tr>
<th>Transformer Tank Explosion Prevention</th>
<th>Fire Extinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. For system activation</td>
<td></td>
</tr>
<tr>
<td>b. For reduction of pressure in Tank by Nitrogen release.</td>
<td></td>
</tr>
</tbody>
</table>

13.3 Any other technical details not covered above.